我正在编写一个机器学习脚本来拍照并标记它。我有我的数据集在一个文件夹中,我将它们添加到数组中,并为标签创建另一个数组。当我尝试使用svm。它给出了错误:
File "scikit.py", line 43, in <module>
clf.fit(arrayimg, arraylabel)
File "/home/mkmeral/.local/lib/python2.7/site-packages/sklearn/svm/base.py", line 151, in fit
X, y = check_X_y(X, y, dtype=np.float64, order='C', accept_sparse='csr')
File "/home/mkmeral/.local/lib/python2.7/site-packages/sklearn/utils/validation.py", line 521, in check_X_y
ensure_min_features, warn_on_dtype, estimator)
File "/home/mkmeral/.local/lib/python2.7/site-packages/sklearn/utils/validation.py", line 405, in check_array
% (array.ndim, estimator_name))
ValueError: Found array with dim 3. Estimator expected <= 2.
下面是我写的脚本:
import cv2
import numpy as py
from sklearn import svm
camera_port = 0
camera = cv2.VideoCapture(camera_port)
ramp_frames = 5
def getImage():
retval, im = camera.read()
gray_image = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
return gray_image
def insertToArray(arrayone, arraytwo, no, true):
if (true==1):
directory = "/home/mkmeral/Desktop/opencv/strue/"
arraytwo.append(1)
else:
directory = "/home/mkmeral/Desktop/opencv/sfalse/"
arraytwo.append(0)
im = cv2.imread(directory + str(no) + ".png")
gray_image = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
arrayone.append(gray_image)
arrayimg = []
arraylabel = []
count = 1
while (count<43):
insertToArray(arrayimg, arraylabel, count, 1)
print("True = " , count)
count = count + 1
count = 0
while (count<43):
insertToArray(arrayimg, arraylabel, count, 0)
print("False = ", count)
count = count + 1
print("Done adding to arrays")
clf = svm.SVC()
print("Done adding to arrayssss")
clf.fit(arrayimg, arraylabel)
print("Done fitting")
for i in xrange(ramp_frames):
temp = getImage()
testimage = getImage()
clf.predict(testimage)
我如何将这些图像适合Scikit学习,预测从网络摄像头拍摄的图像会有问题吗?
我不是图像处理方面的专家,但我猜您的getImage
函数为每个图像返回一个2d数组。其中,sckit-learn
将为每个训练实例期望一个1d数组。假设所有的图像都是相同的大小,那么下面的代码应该可以工作
def getImage():
retval, im = camera.read()
gray_image = cv2.cvtColor(im, cv2.COLOR_BGR2GRAY)
return gray_image.flatten()
这将把您的每个图像转换为1d数组。如果你的图片大小不一样,那么你需要做一些图像处理步骤,比如调整大小或缩小采样。