这是从Pandas数据帧创建矩阵以显示连通性的后续问题。区别在于矩阵。
我在熊猫数据帧中有这种格式的数据:
Customer_ID Location_ID
Alpha A
Alpha B
Alpha C
Beta A
Beta B
Beta D
我想研究客户的流动模式。我的目标是确定客户最常光顾的地点集群。我认为以下矩阵可以提供这样的信息:
A B C D
A 0 0 0 0
B 2 0 0 0
C 1 1 0 0
D 1 1 0 0
在Python中如何做到这一点?
我的数据集相当大(数十万客户和大约一百个位置)。
为了完整起见,这里是我之前答案的修改版本。基本上,在更新矩阵时添加一个条件:if edge > node:
import pandas as pd
#I'm assuming you can get your data into a pandas data frame:
data = {'Customer_ID':[1,1,1,2,2,2],'Location':['A','B','C','A','B','D']}
df = pd.DataFrame(data)
#Initialize an empty matrix
matrix_size = len(df.groupby('Location'))
matrix = [[0 for col in range(matrix_size)] for row in range(matrix_size)]
#To make life easier, I made a map to go from locations
#to row/col positions in the matrix
location_set = list(set(df['Location'].tolist()))
location_set.sort()
location_map = dict(zip(location_set,range(len(location_set))))
#Group data by customer, and create an adjacency list (dyct) for each
#Update the matrix accordingly
for name,group in df.groupby('Customer_ID'):
locations = set(group['Location'].tolist())
dyct = {}
for i in locations:
dyct[i] = list(locations.difference(i))
#Loop through the adjacency list and update matrix
for node, edges in dyct.items():
for edge in edges:
#Add this condition to create bottom half of the symmetric matrix
if edge > node:
matrix[location_map[edge]][location_map[node]] +=1
更改为此行中的2个字符:
overlaps += [(l2, l1, 0) for l1, l2, _ in overlaps]
来自
overlaps += [(l2, l1, c) for l1, l2, c in overlaps]
第一个版本中这行的目的是填充对称值。如果您想要一个较低的对角线矩阵,只需在相应的键中填充零即可。
原始代码:
import pandas as pd
from collections import Counter
from itertools import product
df = pd.DataFrame({
'Customer_ID': ['Alpha', 'Alpha', 'Alpha', 'Beta', 'Beta', 'Beta'],
'Location_ID': ['A', 'B', 'C', 'A', 'B', 'D'],
})
ctrs = {location: Counter(gp.Customer_ID) for location, gp in df.groupby('Location_ID')}
# In [7]: q.ctrs
# Out[7]:
# {'A': Counter({'Alpha': 1, 'Beta': 1}),
# 'B': Counter({'Alpha': 1, 'Beta': 1}),
# 'C': Counter({'Alpha': 1})}
ctrs = list(ctrs.items())
overlaps = [(loc1, loc2, sum(min(ctr1[k], ctr2[k]) for k in ctr1))
for i, (loc1, ctr1) in enumerate(ctrs, start=1)
for (loc2, ctr2) in ctrs[i:] if loc1 != loc2]
overlaps += [(l2, l1, 0) for l1, l2, _ in overlaps]
df2 = pd.DataFrame(overlaps, columns=['Loc1', 'Loc2', 'Count'])
df2 = df2.set_index(['Loc1', 'Loc2'])
df2 = df2.unstack().fillna(0).astype(int)
# Count
# Loc2 A B C D
# Loc1
# A 0 0 0 0
# B 2 0 0 0
# C 1 1 0 0
# D 1 1 0 0