在Pyspark中创建DataFrame字典



我正在尝试创建一年和月的字典。这是一种宏,我可以呼叫需要否。年度和月份。我面临挑战,同时在Pyspark DF中添加动态列

df = spark.createDataFrame([(1, "foo1",'2016-1-31'),(1, "test",'2016-1-31'), (2, "bar1",'2012-1-3'),(4, "foo2",'2011-1-11')], ("k", "v","date"))
w = Window().partitionBy().orderBy(col('date').desc())          
df = df.withColumn("next_date",lag('date').over(w).cast(DateType()))
df = df.withColumn("next_name",lag('v').over(w))
df = df.withColumn("next_date",when(col("k") !=  lag(df.k).over(w),date_add(df.date,605)).otherwise(col('next_date')))
df = df.withColumn("next_name",when(col("k") != lag(df.k).over(w),"").otherwise(col('next_name')))
import copy
dict_of_YearMonth = {}
for yearmonth in [200901,200902,201605 .. etc]:
    key_name = 'Snapshot_'+str(yearmonth)
    dict_of_YearMonth[key_name].withColumn("test",yearmonth)
    dict_of_YearMonth[key_name].withColumn("test_date",to_date(''+yearmonth[:4]+'-'+yearmonth[4:2]+'-1'+''))
 # now i want to add a condition 
  if(dict_of_YearMonth[key_name].test_date >= dict_of_YearMonth[key_name].date) and (test_date <= next_date) then output snapshot_yearmonth  /// i.e dataframe which satisfy this condition i am able to do it in pandas but facing challenge in pyspark
dict_of_YearMonth[key_name]  
dict_of_YearMonth 

然后,我想将所有数据框加成单个pyspark dataframe,我可以在熊猫中执行此操作,如下所示,但我需要在pyspark

中做到这一点
  snapshots=pd.concat([dict_of_YearMonth['Snapshot_201104'],dict_of_YearMonth['Snapshot_201105']])

如果有其他想法可以通过动态添加列来生成动态数据框架字典并执行条件并生成基于年份的数据框架并将它们合并到单个数据框架中。任何帮助,将不胜感激。

我尝试以下代码正常工作

// Function to append all the dataframe using union
def unionAll(*dfs):
return reduce(DataFrame.unionAll, dfs)
// convert dates
def is_date(x):
    try:
        x= str(x)+str('01')
        parse(x)
        return datetime.datetime.strptime(x, '%Y%m%d').strftime("%Y-%m-%d")
    except ValueError:
        pass # if incorrect format, keep trying other format
dict_of_YearMonth = {}
for yearmonth in [200901,200910]:
key_name = 'Snapshot_'+str(yearmonth)
dict_of_YearMonth[key_name]=df
func =  udf(lambda x:  yearmonth, StringType())
dict_of_YearMonth[key_name] = df.withColumn("test",func(col('v')))
default_date = udf (lambda x : is_date(x))
dict_of_YearMonth[key_name] = dict_of_YearMonth[key_name].withColumn("test_date",default_date(col('test')).cast(DateType()))
dict_of_YearMonth  

添加mutiple DataFrames使用以下代码:

final_df = unionAll(dict_of_YearMonth['Snapshot_200901'],  dict_of_YearMonth['Snapshot_200910'])

相关内容

  • 没有找到相关文章

最新更新