快速信息增益计算



我需要为文本分类计算>10k个文档中>100k个特征的Information Gain分数。下面的代码可以正常工作,但是对于完整的数据集来说非常慢—在笔记本电脑上需要一个多小时。数据集是20newsgroup,我正在使用scikit-learn, chi2函数,它在scikit中提供的工作速度非常快。

对于这样的数据集,你知道如何更快地计算信息增益吗?

def information_gain(x, y):
    def _entropy(values):
        counts = np.bincount(values)
        probs = counts[np.nonzero(counts)] / float(len(values))
        return - np.sum(probs * np.log(probs))
    def _information_gain(feature, y):
        feature_set_indices = np.nonzero(feature)[1]
        feature_not_set_indices = [i for i in feature_range if i not in feature_set_indices]
        entropy_x_set = _entropy(y[feature_set_indices])
        entropy_x_not_set = _entropy(y[feature_not_set_indices])
        return entropy_before - (((len(feature_set_indices) / float(feature_size)) * entropy_x_set)
                                 + ((len(feature_not_set_indices) / float(feature_size)) * entropy_x_not_set))
    feature_size = x.shape[0]
    feature_range = range(0, feature_size)
    entropy_before = _entropy(y)
    information_gain_scores = []
    for feature in x.T:
        information_gain_scores.append(_information_gain(feature, y))
    return information_gain_scores, []
编辑:

我合并了内部函数并按如下方式运行cProfiler(在限制为~15k个特征和~1k个文档的数据集上):

cProfile.runctx(
    """for feature in x.T:
    feature_set_indices = np.nonzero(feature)[1]
    feature_not_set_indices = [i for i in feature_range if i not in feature_set_indices]
    values = y[feature_set_indices]
    counts = np.bincount(values)
    probs = counts[np.nonzero(counts)] / float(len(values))
    entropy_x_set = - np.sum(probs * np.log(probs))
    values = y[feature_not_set_indices]
    counts = np.bincount(values)
    probs = counts[np.nonzero(counts)] / float(len(values))
    entropy_x_not_set = - np.sum(probs * np.log(probs))
    result = entropy_before - (((len(feature_set_indices) / float(feature_size)) * entropy_x_set)
                             + ((len(feature_not_set_indices) / float(feature_size)) * entropy_x_not_set))
    information_gain_scores.append(result)""",
    globals(), locals())

tottime成绩前20名:

ncalls  tottime percall cumtime percall filename:lineno(function)
1       60.27   60.27   65.48   65.48   <string>:1(<module>)
16171   1.362   0   2.801   0   csr.py:313(_get_row_slice)
16171   0.523   0   0.892   0   coo.py:201(_check)
16173   0.394   0   0.89    0   compressed.py:101(check_format)
210235  0.297   0   0.297   0   {numpy.core.multiarray.array}
16173   0.287   0   0.331   0   compressed.py:631(prune)
16171   0.197   0   1.529   0   compressed.py:534(tocoo)
16173   0.165   0   1.263   0   compressed.py:20(__init__)
16171   0.139   0   1.669   0   base.py:415(nonzero)
16171   0.124   0   1.201   0   coo.py:111(__init__)
32342   0.123   0   0.123   0   {method 'max' of 'numpy.ndarray' objects}
48513   0.117   0   0.218   0   sputils.py:93(isintlike)
32342   0.114   0   0.114   0   {method 'sum' of 'numpy.ndarray' objects}
16171   0.106   0   3.081   0   csr.py:186(__getitem__)
32342   0.105   0   0.105   0   {numpy.lib._compiled_base.bincount}
32344   0.09    0   0.094   0   base.py:59(set_shape)
210227  0.088   0   0.088   0   {isinstance}
48513   0.081   0   1.777   0   fromnumeric.py:1129(nonzero)
32342   0.078   0   0.078   0   {method 'min' of 'numpy.ndarray' objects}
97032   0.066   0   0.153   0   numeric.py:167(asarray)

看起来大部分时间都花在_get_row_slice上。我不完全确定第一行,看起来它涵盖了我提供给cProfile.runctx的整个块,虽然我不知道为什么第一行totime=60.27和第二行tottime=1.362之间有这么大的差距。差额花在哪里了?可以在cProfile中检查吗?

基本上,看起来问题是稀疏矩阵操作(切片,获取元素)-解决方案可能是使用矩阵代数计算信息增益(如chi2在scikit中实现)。但是我不知道如何用矩阵运算来表达这个计算…有人知道吗??

一年过去了,不知道是否还有帮助。但现在我碰巧面临着同样的任务:文本分类。我已经重写了您的代码使用nonzero()函数提供稀疏矩阵。然后扫描nz,计算对应的y_value,然后计算熵。

下面的代码只需要几秒钟来运行news20数据集(使用libsvm稀疏矩阵格式加载)。

def information_gain(X, y):
    def _calIg():
        entropy_x_set = 0
        entropy_x_not_set = 0
        for c in classCnt:
            probs = classCnt[c] / float(featureTot)
            entropy_x_set = entropy_x_set - probs * np.log(probs)
            probs = (classTotCnt[c] - classCnt[c]) / float(tot - featureTot)
            entropy_x_not_set = entropy_x_not_set - probs * np.log(probs)
        for c in classTotCnt:
            if c not in classCnt:
                probs = classTotCnt[c] / float(tot - featureTot)
                entropy_x_not_set = entropy_x_not_set - probs * np.log(probs)
        return entropy_before - ((featureTot / float(tot)) * entropy_x_set
                             +  ((tot - featureTot) / float(tot)) * entropy_x_not_set)
    tot = X.shape[0]
    classTotCnt = {}
    entropy_before = 0
    for i in y:
        if i not in classTotCnt:
            classTotCnt[i] = 1
        else:
            classTotCnt[i] = classTotCnt[i] + 1
    for c in classTotCnt:
        probs = classTotCnt[c] / float(tot)
        entropy_before = entropy_before - probs * np.log(probs)
    nz = X.T.nonzero()
    pre = 0
    classCnt = {}
    featureTot = 0
    information_gain = []
    for i in range(0, len(nz[0])):
        if (i != 0 and nz[0][i] != pre):
            for notappear in range(pre+1, nz[0][i]):
                information_gain.append(0)
            ig = _calIg()
            information_gain.append(ig)
            pre = nz[0][i]
            classCnt = {}
            featureTot = 0
        featureTot = featureTot + 1
        yclass = y[nz[1][i]]
        if yclass not in classCnt:
            classCnt[yclass] = 1
        else:
            classCnt[yclass] = classCnt[yclass] + 1
    ig = _calIg()
    information_gain.append(ig)
    return np.asarray(information_gain)

这是一个使用矩阵运算的版本。特征的IG是其特定类别分数的平均值。

import numpy as np
from scipy.sparse import issparse
from sklearn.preprocessing import LabelBinarizer
from sklearn.utils import check_array
from sklearn.utils.extmath import safe_sparse_dot

def ig(X, y):
    def get_t1(fc, c, f):
        t = np.log2(fc/(c * f))
        t[~np.isfinite(t)] = 0
        return np.multiply(fc, t)
    def get_t2(fc, c, f):
        t = np.log2((1-f-c+fc)/((1-c)*(1-f)))
        t[~np.isfinite(t)] = 0
        return np.multiply((1-f-c+fc), t)
    def get_t3(c, f, class_count, observed, total):
        nfc = (class_count - observed)/total
        t = np.log2(nfc/(c*(1-f)))
        t[~np.isfinite(t)] = 0
        return np.multiply(nfc, t)
    def get_t4(c, f, feature_count, observed, total):
        fnc = (feature_count - observed)/total
        t = np.log2(fnc/((1-c)*f))
        t[~np.isfinite(t)] = 0
        return np.multiply(fnc, t)
    X = check_array(X, accept_sparse='csr')
    if np.any((X.data if issparse(X) else X) < 0):
        raise ValueError("Input X must be non-negative.")
    Y = LabelBinarizer().fit_transform(y)
    if Y.shape[1] == 1:
        Y = np.append(1 - Y, Y, axis=1)
    # counts
    observed = safe_sparse_dot(Y.T, X)          # n_classes * n_features
    total = observed.sum(axis=0).reshape(1, -1).sum()
    feature_count = X.sum(axis=0).reshape(1, -1)
    class_count = (X.sum(axis=1).reshape(1, -1) * Y).T
    # probs
    f = feature_count / feature_count.sum()
    c = class_count / float(class_count.sum())
    fc = observed / total
    # the feature score is averaged over classes
    scores = (get_t1(fc, c, f) +
            get_t2(fc, c, f) +
            get_t3(c, f, class_count, observed, total) +
            get_t4(c, f, feature_count, observed, total)).mean(axis=0)
    scores = np.asarray(scores).reshape(-1)
    return scores, []

在有1000个实例和1000个唯一特征的数据集上,这种实现比没有矩阵操作的实现快>100。

这就是feature_not_set_indices = [i for i in feature_range if i not in feature_set_indices]占用90%时间的代码,尝试更改为设置操作

相关内容

  • 没有找到相关文章

最新更新