给定一个基于向量的非常简单的矩阵定义:
import Numeric.AD
import qualified Data.Vector as V
newtype Mat a = Mat { unMat :: V.Vector a }
scale' f = Mat . V.map (*f) . unMat
add' a b = Mat $ V.zipWith (+) (unMat a) (unMat b)
sub' a b = Mat $ V.zipWith (-) (unMat a) (unMat b)
mul' a b = Mat $ V.zipWith (*) (unMat a) (unMat b)
pow' a e = Mat $ V.map (^e) (unMat a)
sumElems' :: Num a => Mat a -> a
sumElems' = V.sum . unMat
(用于演示目的...我正在使用hmatrix,但认为问题以某种方式存在(
和一个误差函数(eq3
(:
eq1' :: Num a => [a] -> [Mat a] -> Mat a
eq1' as φs = foldl1 add' $ zipWith scale' as φs
eq3' :: Num a => Mat a -> [a] -> [Mat a] -> a
eq3' img as φs = negate $ sumElems' (errImg `pow'` (2::Int))
where errImg = img `sub'` (eq1' as φs)
为什么编译器无法推断出正确的类型?
diffTest :: forall a . (Fractional a, Ord a) => Mat a -> [Mat a] -> [a] -> [[a]]
diffTest m φs as0 = gradientDescent go as0
where go xs = eq3' m xs φs
确切的错误消息是这样的:
src/Stuff.hs:59:37:
Could not deduce (a ~ Numeric.AD.Internal.Reverse.Reverse s a)
from the context (Fractional a, Ord a)
bound by the type signature for
diffTest :: (Fractional a, Ord a) =>
Mat a -> [Mat a] -> [a] -> [[a]]
at src/Stuff.hs:58:13-69
or from (reflection-1.5.1.2:Data.Reflection.Reifies
s Numeric.AD.Internal.Reverse.Tape)
bound by a type expected by the context:
reflection-1.5.1.2:Data.Reflection.Reifies
s Numeric.AD.Internal.Reverse.Tape =>
[Numeric.AD.Internal.Reverse.Reverse s a]
-> Numeric.AD.Internal.Reverse.Reverse s a
at src/Stuff.hs:59:21-42
‘a’ is a rigid type variable bound by
the type signature for
diffTest :: (Fractional a, Ord a) =>
Mat a -> [Mat a] -> [a] -> [[a]]
at src//Stuff.hs:58:13
Expected type: [Numeric.AD.Internal.Reverse.Reverse s a]
-> Numeric.AD.Internal.Reverse.Reverse s a
Actual type: [a] -> a
Relevant bindings include
go :: [a] -> a (bound at src/Stuff.hs:60:9)
as0 :: [a] (bound at src/Stuff.hs:59:15)
φs :: [Mat a] (bound at src/Stuff.hs:59:12)
m :: Mat a (bound at src/Stuff.hs:59:10)
diffTest :: Mat a -> [Mat a] -> [a] -> [[a]]
(bound at src/Stuff.hs:59:1)
In the first argument of ‘gradientDescent’, namely ‘go’
In the expression: gradientDescent go as0
ad
中的 gradientDescent
函数的类型为
gradientDescent :: (Traversable f, Fractional a, Ord a) =>
(forall s. Reifies s Tape => f (Reverse s a) -> Reverse s a) ->
f a -> [f a]
它的第一个参数需要一个类型为 f r -> r
的函数,其中 r
forall s. (Reverse s a)
。 go
具有类型 [a] -> a
其中a
是绑定在 diffTest
签名中的类型。这些a
是相同的,但Reverse s a
与a
不同。
Reverse
类型具有许多类型类的实例,这些实例允许我们将a
转换为Reverse s a
或转换为 。最明显的是Fractional a => Fractional (Reverse s a)
,它将使我们能够使用 realToFrac
将 a
s 转换为 Reverse s a
s 。
为此,我们需要能够在Mat a
上映射a -> b
函数以获得Mat b
。执行此操作的最简单方法是为 Mat
派生一个Functor
实例。
{-# LANGUAGE DeriveFunctor #-}
newtype Mat a = Mat { unMat :: V.Vector a }
deriving Functor
我们可以将m
和fs
转换为任何Fractional a' => Mat a'
fmap realToFrac
.
diffTest m fs as0 = gradientDescent go as0
where go xs = eq3' (fmap realToFrac m) xs (fmap (fmap realToFrac) fs)
但是有一种更好的方法隐藏在广告包中。Reverse s a
在所有s
上都是通用限定的,但a
与diffTest
的类型签名中绑定的a
相同。我们真的只需要一个函数a -> (forall s. Reverse s a)
.此函数auto
自 Mode
类,Reverse s a
具有该类的实例。 auto
有有点奇怪的类型Mode t => Scalar t -> t
但type Scalar (Reverse s a) = a
.专门用于Reverse
auto
具有的类型
auto :: (Reifies s Tape, Num a) => a -> Reverse s a
这使我们能够将Mat a
转换为Mat (Reverse s a)
,而不会弄乱与Rational
之间的转换。
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
diffTest :: forall a . (Fractional a, Ord a) => Mat a -> [Mat a] -> [a] -> [[a]]
diffTest m fs as0 = gradientDescent go as0
where
go :: forall t. (Scalar t ~ a, Mode t) => [t] -> t
go xs = eq3' (fmap auto m) xs (fmap (fmap auto) fs)