张量流概率中的重新参数化:tf。GradientTape() 不计算相对于分布平均值的梯度



tensorflow版本2.0.0-beta1中,我正在尝试实现一个keras层,该层的权重从正态随机分布中采样。我想将分布的均值作为可训练参数。

多亏了tensorflow-probability年已经实现的"重新参数化技巧",如果我没记错的话,原则上应该可以计算相对于分布平均值的梯度。

但是,当我尝试使用tf.GradientTape()计算网络输出相对于平均值变量的梯度时,返回的梯度None

我创建了两个最小示例,一个是具有确定性权重的层,另一个是具有随机权重的层。确定性层梯度的梯度按预期计算,但在随机层的情况下None梯度。没有错误消息详细说明为什么None梯度,我有点卡住了。

最少的示例代码:

答:这是确定性网络的最小示例:

import tensorflow as tf; print(tf.__version__)
from tensorflow.keras import backend as K
from tensorflow.keras.layers import Layer,Input
from tensorflow.keras.models import Model
from tensorflow.keras.initializers import RandomNormal
import tensorflow_probability as tfp
import numpy as np
# example data
x_data = np.random.rand(99,3).astype(np.float32)
# # A: DETERMINISTIC MODEL
# 1 Define Layer
class deterministic_test_layer(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(deterministic_test_layer, self).__init__(**kwargs)
def build(self, input_shape):
self.kernel = self.add_weight(name='kernel', 
shape=(input_shape[1], self.output_dim),
initializer='uniform',
trainable=True)
super(deterministic_test_layer, self).build(input_shape)
def call(self, x):
return K.dot(x, self.kernel)
def compute_output_shape(self, input_shape):
return (input_shape[0], self.output_dim)
# 2 Create model and calculate gradient
x = Input(shape=(3,))
fx = deterministic_test_layer(1)(x)
deterministic_test_model = Model(name='test_deterministic',inputs=[x], outputs=[fx])
print('nnnCalculating gradients for deterministic model: ')
for x_now in np.split(x_data,3):
#     print(x_now.shape)
with tf.GradientTape() as tape:
fx_now = deterministic_test_model(x_now)
grads = tape.gradient(
fx_now,
deterministic_test_model.trainable_variables,
)
print('n',grads,'n')
print(deterministic_test_model.summary())

B:下面的例子非常相似,但我尝试使用随机采样的权重(call()时间随机采样!)作为测试层,而不是确定性权重:

# # B: RANDOM MODEL
# 1 Define Layer
class random_test_layer(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(random_test_layer, self).__init__(**kwargs)
def build(self, input_shape):
self.mean_W = self.add_weight('mean_W',
initializer=RandomNormal(mean=0.5,stddev=0.1),
trainable=True)
self.kernel_dist = tfp.distributions.MultivariateNormalDiag(loc=self.mean_W,scale_diag=(1.,))
super(random_test_layer, self).build(input_shape)
def call(self, x):
sampled_kernel = self.kernel_dist.sample(sample_shape=x.shape[1])
return K.dot(x, sampled_kernel)
def compute_output_shape(self, input_shape):
return (input_shape[0], self.output_dim)
# 2 Create model and calculate gradient
x = Input(shape=(3,))
fx = random_test_layer(1)(x)
random_test_model = Model(name='test_random',inputs=[x], outputs=[fx])
print('nnnCalculating gradients for random model: ')
for x_now in np.split(x_data,3):
#     print(x_now.shape)
with tf.GradientTape() as tape:
fx_now = random_test_model(x_now)
grads = tape.gradient(
fx_now,
random_test_model.trainable_variables,
)
print('n',grads,'n')
print(random_test_model.summary())

预期/实际输出:

答:确定性网络按预期工作,并计算梯度。输出为:

2.0.0-beta1

Calculating gradients for deterministic model: 
[<tf.Tensor: id=26, shape=(3, 1), dtype=float32, numpy=
array([[17.79845  ],
[15.764006 ],
[14.4183035]], dtype=float32)>] 

[<tf.Tensor: id=34, shape=(3, 1), dtype=float32, numpy=
array([[16.22232 ],
[17.09122 ],
[16.195663]], dtype=float32)>] 

[<tf.Tensor: id=42, shape=(3, 1), dtype=float32, numpy=
array([[16.382954],
[16.074356],
[17.718027]], dtype=float32)>] 
Model: "test_deterministic"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_1 (InputLayer)         [(None, 3)]               0         
_________________________________________________________________
deterministic_test_layer (de (None, 1)                 3         
=================================================================
Total params: 3
Trainable params: 3
Non-trainable params: 0
_________________________________________________________________
None

B:但是,在类似的随机网络的情况下,梯度不会按预期计算(使用重新参数化技巧)。相反,它们是None.完整输出为

Calculating gradients for random model: 
[None] 

[None] 

[None] 
Model: "test_random"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
input_2 (InputLayer)         [(None, 3)]               0         
_________________________________________________________________
random_test_layer (random_te (None, 1)                 1         
=================================================================
Total params: 1
Trainable params: 1
Non-trainable params: 0
_________________________________________________________________
None

任何人都可以指出我这里的问题吗?

似乎 tfp.distributions.MultivariateNormalDiag 在其输入参数方面不可微分(例如loc)。在这种特殊情况下,以下内容将是等效的:

class random_test_layer(Layer):
...
def build(self, input_shape):
...
self.kernel_dist = tfp.distributions.MultivariateNormalDiag(loc=0, scale_diag=(1.,))
super(random_test_layer, self).build(input_shape)
def call(self, x):
sampled_kernel = self.kernel_dist.sample(sample_shape=x.shape[1]) + self.mean_W
return K.dot(x, sampled_kernel)

然而,在这种情况下,损失在self.mean_W方面是可区分的。

请注意:尽管此方法可能适用于您的目的,但请注意,调用密度函数self.kernel_dist.prob会产生不同的结果,因为我们loc外部进行了介绍。

最新更新