我能够训练系统,但是当我尝试预测时,抛出Bad argument异常。
OpenCV错误:cvPreparePredictData中的坏参数(示例不是有效向量),文件........ OpenCV modulesmlsrcinner_function .cpp,第1099行线程"main"中的异常CvException [org.opencv.core.]CvException: cv::Exception: ........opencvmodulesmlsrcinner_functions.cpp:1099:错误:(-5)样本不是函数cvPreparePredictData中的有效向量)
这是我的代码:
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
Mat classes = new Mat();
Mat trainingData = new Mat();
Mat trainingImages = new Mat();
Mat trainingLabels = new Mat();
CvSVM clasificador;
String path="C:\java workspace\ora\images\Color_Happy_jpg";
for (File file : new File(path).listFiles()) {
Mat img=new Mat();
Mat con = Highgui.imread(path+"\"+file.getName(),Highgui.CV_LOAD_IMAGE_GRAYSCALE);
con.convertTo(img, CvType.CV_32FC1,1.0/255.0);
img.reshape(1, 1);
trainingImages.push_back(img);
trainingLabels.push_back(Mat.ones(new Size(1, 75), CvType.CV_32FC1));
}
System.out.println("divide");
path="C:\java workspace\ora\images\Color_Sad_jpg";
for (File file : new File(path).listFiles()) {
Mat img=new Mat();
Mat m=new Mat(new Size(640,480),CvType.CV_32FC1);
Mat con = Highgui.imread(file.getAbsolutePath(),Highgui.CV_LOAD_IMAGE_GRAYSCALE);
con.convertTo(img, CvType.CV_32FC1,1.0/255.0);
img.reshape(1, 1);
trainingImages.push_back(img);
trainingLabels.push_back(Mat.zeros(new Size(1, 75), CvType.CV_32FC1));
}
trainingLabels.copyTo(classes);
CvSVMParams params = new CvSVMParams();
params.set_kernel_type(CvSVM.LINEAR);
CvType.typeToString(trainingImages.type());
CvSVM svm=new CvSVM();
clasificador = new CvSVM(trainingImages,classes, new Mat(), new Mat(), params);
clasificador.save("C:\java workspace\ora\images\svm.xml");
Mat out=new Mat();
clasificador.load("C:\java workspace\ora\images\svm.xml");
Mat sample=Highgui.imread("C:\java workspace\ora\images\Color_Sad_jpg\EMBfemale20-2happy.jpg",Highgui.CV_LOAD_IMAGE_GRAYSCALE);
sample.convertTo(out, CvType.CV_32FC1,1.0/255.0);
out.reshape(1, 75);
System.out.println(clasificador.predict(out));
1.
你的trainLabels还是错的
你需要一个带有numrows==numimages和1 col.所以,每个图像1个标签的浮动垫。
所以你悲伤的脸应该有:
trainingLabels.push_back(-1.0);
和你的快乐的人应该:
trainingLabels.push_back(1.0);
2。
用于预测的样本必须以与训练相同的方式处理。
sample.convertTo(out, CvType.CV_32FC1,1.0/255.0);
out.reshape(1, 1);