pymc3的多元线性回归



我在专门使用emcee多年后,最近开始学习pymc3,我遇到了一些概念问题。

我正在练习霍格的《拟合数据模型》第7章。这涉及到具有任意二维不确定性的直线的mcmc拟合。我已经完成了这很容易在emcee,但pymc是给我一些问题。

它本质上归结为使用多元高斯似然。

这是我到目前为止所知道的。

from pymc3 import  *
import numpy as np
import matplotlib.pyplot as plt
size = 200
true_intercept = 1
true_slope = 2
true_x = np.linspace(0, 1, size)
# y = a + b*x
true_regression_line = true_intercept + true_slope * true_x
# add noise
# here the errors are all the same but the real world they are usually not!
std_y, std_x = 0.1, 0.1 
y = true_regression_line + np.random.normal(scale=std_y, size=size)
x = true_x + np.random.normal(scale=std_x, size=size)
y_err = np.ones_like(y) * std_y
x_err = np.ones_like(x) * std_x
data = dict(x=x, y=y)
with Model() as model: # model specifications in PyMC3 are wrapped in a with-statement
    # Define priors
    intercept = Normal('Intercept', 0, sd=20)
    gradient = Normal('gradient', 0, sd=20)

    # Define likelihood
    likelihood = MvNormal('y', mu=intercept + gradient * x,
                        tau=1./(np.stack((y_err, x_err))**2.), observed=y)
    # start the mcmc!
    start = find_MAP() # Find starting value by optimization
    step = NUTS(scaling=start) # Instantiate MCMC sampling algorithm
    trace = sample(2000, step, start=start, progressbar=False) # draw 2000 posterior samples using NUTS sampling

这会引发错误:LinAlgError: Last 2 dimensions of the array must be square

因此,我试图将x和y (mu s)的测量值及其相关的测量不确定性(y_errx_err)传递给MvNormal。但它似乎不喜欢2d tau参数。

任何想法?这必须是可能的

谢谢

您可以尝试采用以下模型。是一个"规则"线性回归。但是xy已经被高斯分布所取代。在这里,我不仅假设输入和输出变量的测量值,而且还假设它们的误差的可靠估计(例如由测量设备提供)。如果您不相信这些错误值,您可以尝试从数据中估计它们。

with pm.Model() as model:
    intercept = pm.Normal('intercept', 0, sd=20)
    gradient = pm.Normal('gradient', 0, sd=20)
    epsilon = pm.HalfCauchy('epsilon', 5)
    obs_x = pm.Normal('obs_x', mu=x, sd=x_err, shape=len(x))
    obs_y = pm.Normal('obs_y', mu=y, sd=y_err, shape=len(y))
    likelihood = pm.Normal('y', mu=intercept + gradient * obs_x,
                    sd=epsilon, observed=obs_y)
    trace = pm.sample(2000)

如果你从数据中估计误差,那么假设它们可能是相关的是合理的,因此,你可以使用多元高斯,而不是使用两个单独的高斯。在这种情况下,您将得到如下所示的模型:

df_data = pd.DataFrame(data)
cov = df_data.cov()
with pm.Model() as model:
    intercept = pm.Normal('intercept', 0, sd=20)
    gradient = pm.Normal('gradient', 0, sd=20)
    epsilon = pm.HalfCauchy('epsilon', 5)
    obs_xy = pm.MvNormal('obs_xy', mu=df_data, tau=pm.matrix_inverse(cov), shape=df_data.shape)
    yl = pm.Normal('yl', mu=intercept + gradient * obs_xy[:,0],
                    sd=epsilon, observed=obs_xy[:,1])
mu, sds, elbo = pm.variational.advi(n=20000)
step =  pm.NUTS(scaling=model.dict_to_array(sds), is_cov=True)
trace = pm.sample(1000, step=step, start=mu)

注意,在前面的模型中,协方差矩阵是从数据中计算出来的。如果你要这样做,那么我认为最好使用第一个模型,但如果你要估计协方差矩阵,那么第二个模型可能是一个明智的方法。

对于第二个模型,我使用ADVI来初始化它。ADVI可以是初始化模型的好方法,通常它比find_MAP()要好得多。

你可能还想检查这个由David Hogg编写的仓库。在《Statistical Rethinking》一书中,McElreath讨论了线性回归的问题,包括输入和输出变量中的误差。

相关内容

  • 没有找到相关文章

最新更新