我正在尝试运行一个程序,按照此链接中给出的步骤来计算单词的数量及其频率:http://developer.yahoo.com/hadoop/tutorial/module3.html
我已经加载了一个名为input的目录,其中包括三个文本文件。
我能够正确配置所有内容。现在,在运行 WordCount.java 时,我在输出目录内的 part-00000 文件中看不到任何内容。
Mapper 的 java 代码是:
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
public class WordCountMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {
private final IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(WritableComparable key, Writable value,
OutputCollector output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line.toLowerCase());
while(itr.hasMoreTokens()) {
word.set(itr.nextToken());
output.collect(word, one);
}
}
@Override
public void map(LongWritable arg0, Text arg1,
OutputCollector<Text, IntWritable> arg2, Reporter arg3)
throws IOException {
// TODO Auto-generated method stub
}
}
归约代码为:
public class WordCountReducer extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator values,
OutputCollector output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
//System.out.println(values.next());
IntWritable value = (IntWritable) values.next();
sum += value.get(); // process value
}
output.collect(key, new IntWritable(sum));
}
}
单词计数器的代码是:
public class Counter {
public static void main(String[] args) {
JobClient client = new JobClient();
JobConf conf = new JobConf(com.example.Counter.class);
// TODO: specify output types
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
// TODO: specify input and output DIRECTORIES (not files)
conf.setInputPath(new Path("src"));
conf.setOutputPath(new Path("out"));
// TODO: specify a mapper
conf.setMapperClass(org.apache.hadoop.mapred.lib.IdentityMapper.class);
// TODO: specify a reducer
conf
.setReducerClass(org.apache.hadoop.mapred.lib.IdentityReducer.class);
client.setConf(conf);
try {
JobClient.runJob(conf);
} catch (Exception e) {
e.printStackTrace();
}
}
}
在控制台中,我得到这些日志:
13/09/10 10:09:20 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
13/09/10 10:09:20 INFO mapred.FileInputFormat: Total input paths to process : 3
13/09/10 10:09:20 INFO mapred.FileInputFormat: Total input paths to process : 3
13/09/10 10:09:20 INFO mapred.JobClient: Running job: job_201309100855_0012
13/09/10 10:09:21 INFO mapred.JobClient: map 0% reduce 0%
13/09/10 10:09:25 INFO mapred.JobClient: map 25% reduce 0%
13/09/10 10:09:26 INFO mapred.JobClient: map 75% reduce 0%
13/09/10 10:09:27 INFO mapred.JobClient: map 100% reduce 0%
13/09/10 10:09:35 INFO mapred.JobClient: Job complete: job_201309100855_0012
13/09/10 10:09:35 INFO mapred.JobClient: Counters: 15
13/09/10 10:09:35 INFO mapred.JobClient: File Systems
13/09/10 10:09:35 INFO mapred.JobClient: HDFS bytes read=54049
13/09/10 10:09:35 INFO mapred.JobClient: Local bytes read=14
13/09/10 10:09:35 INFO mapred.JobClient: Local bytes written=214
13/09/10 10:09:35 INFO mapred.JobClient: Job Counters
13/09/10 10:09:35 INFO mapred.JobClient: Launched reduce tasks=1
13/09/10 10:09:35 INFO mapred.JobClient: Launched map tasks=4
13/09/10 10:09:35 INFO mapred.JobClient: Data-local map tasks=4
13/09/10 10:09:35 INFO mapred.JobClient: Map-Reduce Framework
13/09/10 10:09:35 INFO mapred.JobClient: Reduce input groups=0
13/09/10 10:09:35 INFO mapred.JobClient: Combine output records=0
13/09/10 10:09:35 INFO mapred.JobClient: Map input records=326
13/09/10 10:09:35 INFO mapred.JobClient: Reduce output records=0
13/09/10 10:09:35 INFO mapred.JobClient: Map output bytes=0
13/09/10 10:09:35 INFO mapred.JobClient: Map input bytes=50752
13/09/10 10:09:35 INFO mapred.JobClient: Combine input records=0
13/09/10 10:09:35 INFO mapred.JobClient: Map output records=0
13/09/10 10:09:35 INFO mapred.JobClient: Reduce input records=0
我对Hadoop很陌生。
请回复适当的答案。
谢谢。
映射器类中有两个map
方法。带有@Override
注释的那个是实际上被覆盖的方法,该方法不执行任何操作。因此,映射器中没有任何东西出来,也没有任何东西进入化简器,因此没有输出。
删除标有@Override
注释的map
方法,并用@Override
标记第一个map
方法。然后修复任何方法签名问题,它应该可以工作。
我遇到了同样的问题。我通过删除被覆盖的 map 方法并将第一个参数的 map 方法的签名更改为 LongWritable
来解决它。更新映射方法签名,如下所示:
@Override
public void map(LongWritable key, Text value, OutputCollector output, Reporter reporter)
throws IOException {