Hadoop - WordCount 的结果未写入输出文件



我正在尝试运行一个程序,按照此链接中给出的步骤来计算单词的数量及其频率:http://developer.yahoo.com/hadoop/tutorial/module3.html

我已经加载了一个名为input的目录,其中包括三个文本文件。

我能够正确配置所有内容。现在,在运行 WordCount.java 时,我在输出目录内的 part-00000 文件中看不到任何内容。

Mapper 的 java 代码是:

import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
public class WordCountMapper extends MapReduceBase
implements Mapper<LongWritable, Text, Text, IntWritable> {
private final IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(WritableComparable key, Writable value,
  OutputCollector output, Reporter reporter) throws IOException {
String line = value.toString();
StringTokenizer itr = new StringTokenizer(line.toLowerCase());
while(itr.hasMoreTokens()) {
  word.set(itr.nextToken());
  output.collect(word, one);
}
}
@Override
public void map(LongWritable arg0, Text arg1,
    OutputCollector<Text, IntWritable> arg2, Reporter arg3)
     throws IOException {
// TODO Auto-generated method stub
 }
}

归约代码为:

public class WordCountReducer extends MapReduceBase
implements Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterator values,
  OutputCollector output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
    //System.out.println(values.next());
  IntWritable value = (IntWritable) values.next();
  sum += value.get(); // process value
}
output.collect(key, new IntWritable(sum));
 }
 }

单词计数器的代码是:

public class Counter {
public static void main(String[] args) {
    JobClient client = new JobClient();
    JobConf conf = new JobConf(com.example.Counter.class);
    // TODO: specify output types
    conf.setOutputKeyClass(Text.class);
    conf.setOutputValueClass(IntWritable.class);
    // TODO: specify input and output DIRECTORIES (not files)
    conf.setInputPath(new Path("src"));
    conf.setOutputPath(new Path("out"));
    // TODO: specify a mapper
    conf.setMapperClass(org.apache.hadoop.mapred.lib.IdentityMapper.class);
    // TODO: specify a reducer
    conf
                   .setReducerClass(org.apache.hadoop.mapred.lib.IdentityReducer.class);
    client.setConf(conf);
    try {
        JobClient.runJob(conf);
    } catch (Exception e) {
        e.printStackTrace();
    }
}
}

在控制台中,我得到这些日志:

13/09/10 10:09:20 WARN mapred.JobClient: Use GenericOptionsParser for parsing the       arguments. Applications should implement Tool for the same.
13/09/10 10:09:20 INFO mapred.FileInputFormat: Total input paths to process : 3
13/09/10 10:09:20 INFO mapred.FileInputFormat: Total input paths to process : 3
13/09/10 10:09:20 INFO mapred.JobClient: Running job: job_201309100855_0012
13/09/10 10:09:21 INFO mapred.JobClient:  map 0% reduce 0%
13/09/10 10:09:25 INFO mapred.JobClient:  map 25% reduce 0%
13/09/10 10:09:26 INFO mapred.JobClient:  map 75% reduce 0%
13/09/10 10:09:27 INFO mapred.JobClient:  map 100% reduce 0%
13/09/10 10:09:35 INFO mapred.JobClient: Job complete: job_201309100855_0012
13/09/10 10:09:35 INFO mapred.JobClient: Counters: 15
13/09/10 10:09:35 INFO mapred.JobClient:   File Systems
13/09/10 10:09:35 INFO mapred.JobClient:     HDFS bytes read=54049
13/09/10 10:09:35 INFO mapred.JobClient:     Local bytes read=14
13/09/10 10:09:35 INFO mapred.JobClient:     Local bytes written=214
13/09/10 10:09:35 INFO mapred.JobClient:   Job Counters 
13/09/10 10:09:35 INFO mapred.JobClient:     Launched reduce tasks=1
13/09/10 10:09:35 INFO mapred.JobClient:     Launched map tasks=4
13/09/10 10:09:35 INFO mapred.JobClient:     Data-local map tasks=4
13/09/10 10:09:35 INFO mapred.JobClient:   Map-Reduce Framework
13/09/10 10:09:35 INFO mapred.JobClient:     Reduce input groups=0
13/09/10 10:09:35 INFO mapred.JobClient:     Combine output records=0
13/09/10 10:09:35 INFO mapred.JobClient:     Map input records=326
13/09/10 10:09:35 INFO mapred.JobClient:     Reduce output records=0
13/09/10 10:09:35 INFO mapred.JobClient:     Map output bytes=0
13/09/10 10:09:35 INFO mapred.JobClient:     Map input bytes=50752
13/09/10 10:09:35 INFO mapred.JobClient:     Combine input records=0
13/09/10 10:09:35 INFO mapred.JobClient:     Map output records=0
13/09/10 10:09:35 INFO mapred.JobClient:     Reduce input records=0

我对Hadoop很陌生。

请回复适当的答案。

谢谢。

映射器类中有两个map方法。带有@Override注释的那个是实际上被覆盖的方法,该方法不执行任何操作。因此,映射器中没有任何东西出来,也没有任何东西进入化简器,因此没有输出。

删除标有@Override注释的map方法,并用@Override标记第一个map方法。然后修复任何方法签名问题,它应该可以工作。

我遇到了同样的问题。我通过删除被覆盖的 map 方法并将第一个参数的 map 方法的签名更改为 LongWritable 来解决它。更新映射方法签名,如下所示:

@Override
public void map(LongWritable key, Text value, OutputCollector output, Reporter reporter) 
    throws IOException {

相关内容

  • 没有找到相关文章

最新更新