使用pickle加速sklearn/机器学习上的分类任务



我已经训练了一个通过pickle加载的分类器。我主要的疑问是,是否有什么东西可以加速分类任务。每个文本(特征提取和分类)几乎需要1分钟,这正常吗?我应该使用多线程吗?

下面是一些代码片段,可以看到整个流程:
for item in items:
    review = ''.join(item['review_body'])
    review_features = getReviewFeatures(review)
    normalized_predicted_rating = getPredictedRating(review_features)
    item_processed['rating'] = str(round(float(normalized_predicted_rating),1))
def getReviewFeatures(review, verbose=True):
    text_tokens = tokenize(review)
    polarity = getTextPolarity(review)
    subjectivity = getTextSubjectivity(review)
    taggs = getTaggs(text_tokens)
    bigrams = processBigram(taggs)
    freqBigram = countBigramFreq(bigrams)
    sort_bi = sortMostCommun(freqBigram)
    adjectives = getAdjectives(taggs)
    freqAdjectives = countFreqAdjectives(adjectives)
    sort_adjectives = sortMostCommun(freqAdjectives)
    word_features_adj = list(sort_adjectives)
    word_features = list(sort_bi)
    features={}
    for bigram,freq in word_features:
        features['contains(%s)' % unicode(bigram).encode('utf-8')] = True
        features["count({})".format(unicode(bigram).encode('utf-8'))] = freq
    for word,freq in word_features_adj:
        features['contains(%s)' % unicode(word).encode('utf-8')] = True
        features["count({})".format(unicode(word).encode('utf-8'))] = freq
    features["polarity"] = polarity
    features["subjectivity"] = subjectivity
    if verbose:
        print "Get review features..."    
    return features

def getPredictedRating(review_features, verbose=True):
    start_time = time.time()
    classifier = pickle.load(open("LinearSVC5.pickle", "rb" ))
    p_rating = classifier.classify(review_features) # in the form of "# star"
    predicted_rating = re.findall(r'd+', p_rating)[0]
    predicted_rating = int(predicted_rating)
    best_rating = 5
    worst_rating = 1
    normalized_predicted_rating = 0
    normalized_predicted_rating = round(float(predicted_rating)*float(10.0)/((float(best_rating)-float(worst_rating))+float(worst_rating)))
    if verbose:
        print "Get predicted rating..."
        print "ML_RATING: ", normalized_predicted_rating
        print("---Took %s seconds to predict rating for the review---" % (time.time() - start_time)) 
    return normalized_predicted_rating

NLTK是一个很好的工具,也是自然语言处理的一个很好的起点,但如果速度很重要,它有时就不是很有用了,正如作者暗示的那样:

NLTK被称为"使用Python进行计算语言学教学和工作的绝佳工具"one_answers"使用自然语言的神奇库"。

所以如果你的问题只在于分类器的速度,你必须使用另一个资源,或者你必须自己编写分类器。

如果你想使用一个可能更快的分类器,

Scikit可能对你有帮助。

似乎您使用dictionary来构建特征向量。我强烈怀疑问题就在那里。

正确的方法是使用numpy ndarray,其中包含行上的示例和列上的特征。比如

import numpy as np
# let's suppose 6 different features = 6-dimensional vector
feats = np.array((1, 6))
# column 0 contains polarity, column 1 subjectivity, and so on..
feats[:, 0] = polarity
feats[:, 1] = subjectivity
# ....
classifier.classify(feats)

当然,在训练过程中必须使用相同的数据结构并遵守相同的约定。

相关内容

  • 没有找到相关文章

最新更新