该算法中的MLP分类器稳定在局部极小值



我用theano编写了一个MLP分类器。使用反向传播算法的训练函数如下:

self.weights=[theano.shared(numpy.random.random((network.architecture[i+1],network.architecture[i]))) for i in range(len(network.architecture)-1)]
self.bias=[theano.shared(numpy.random.random(network.architecture[i+1])) for i in range(len(network.architecture)-1)]
self.layers=network.layers
self.prev_rate=[theano.shared(numpy.zeros((network.architecture[i+1],network.architecture[i]))) for i in range(len(network.architecture)-1)]+[theano.shared(numpy.zeros(network.architecture[i+1])) for i in range(len(network.architecture)-1)]
prediction=T.dmatrix()
output=T.dmatrix()
reg_lambda=T.dscalar()
alpha=T.dscalar()
momentum=T.dscalar()
cost=T.nnet.categorical_crossentropy(prediction,output).mean()
for i,j in zip(self.weights,self.bias):
    cost+=T.sum(i**2)*reg_lambda
    cost+=T.sum(j**2)*reg_lambda
parameters=self.weights+self.bias
rates=[(alpha*T.grad(cost,parameter)+momentum*prev_rate) for parameter,prev_rate in zip(parameters,self.prev_rate)]
updates=[(weight,weight-rate) for weight,rate in zip(parameters,rates)]+[(prev_rate,rate) for prev_rate,rate in zip(self.prev_rate,rates)]
self.backprop=theano.function([prediction,output,reg_lambda,alpha,momentum],cost,updates=updates)

我试图为XOR问题训练分类器。实现是

network=FeedForwardNetwork([2,2,2])
network.initialize()
network.train(numpy.array([[0.,0.],[0.,1.],[1.,0.],[1.,1.],[0.,0.],[0.,1.],[1.,0.],[1.,1.]]),numpy.array([[0.,1.],[1.,0.],[1.,0.],[0.,1.],[0.,1.],[1.,0.],[1.,0.],[0.,1.]]),alpha=0.01,epochs=1000000000000000,momentum=0.9)
print network.predict(numpy.array([[1.,0.]]))
print network.predict(numpy.array([[0.,0.]]))

initialize()方法只编译后端的所有函数,即反向传播函数、用于计算预测的前向传递函数和其他一些函数。现在,当我运行这个代码时,训练会稳定在局部极小值。

0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056
0.69314718056

在训练开始时,损失约为0.92。它稳步下降至上述数值,并在此停止。我试着改变阿尔法和动量的值。我做错了什么?

p.S。整个代码在这里:networks.py

import theano
import theano.tensor as T
import numpy
from layers import *
from backend import NetworkBackend
class Network:
    def __init__(self,architecture):
        self.architecture=architecture
        self.layers=[]
        self.weights=[]
        self.bias=[]
    def __str__(self):
        banner=''
        for i in range(len(self.weights)):
            banner+=str(self.weights[i])+'n'
            banner+=str(self.bias[i])+'n'
        return banner
class FeedForwardNetwork(Network):
    def initialize(self):
        self.layers.append(InputLayer(units=self.architecture[0]))
        for i in range(1,len(self.architecture[:-1])):
            self.layers.append(SigmoidLayer(units=self.architecture[i]))
        self.layers.append(SoftmaxLayer(units=self.architecture[-1]))
        self.backend=NetworkBackend(self)
    def predict(self,inputs):
        return self.backend.activate(inputs)
    def train(self,X,y,alpha=100,reg_lambda=0.0001,epochs=10000,momentum=0.9):
        cost=1
        while cost>0.01 and epochs:
            prediction=self.predict(X)
            cost=self.backend.backprop(prediction,y,reg_lambda,alpha,momentum)
            print cost
            epochs-=1

if __name__=='__main__':
    network=FeedForwardNetwork([2,2,2])
    network.initialize()
    network.train(numpy.array([[0.,0.],[0.,1.],[1.,0.],[1.,1.],[0.,0.],[0.,1.],[1.,0.],[1.,1.]]),numpy.array([[0.,1.],[1.,0.],[1.,0.],[0.,1.],[0.,1.],[1.,0.],[1.,0.],[0.,1.]]),alpha=0.01,epochs=1000000000000000,momentum=0.9)
    print network.predict(numpy.array([[1.,0.]]))
    print network.predict(numpy.array([[0.,0.]]))

图层.py

import theano
import theano.tensor as T
import scipy
from backend import ComputationBackend
class Layer:
    def __init__(self,units):
        self.units=units
        self.backend=ComputationBackend()
    def __str__(self):
        banner=self.__class__.__name__
        banner+=" Units:%d"%self.units
        return banner
class SigmoidLayer(Layer):
    def forwardPass(self,inputs):
        return self.backend.sigmoid(inputs)

class InputLayer(Layer):
    def forwardPass(self,inputs):
        return inputs
class SoftmaxLayer(Layer):
    def forwardPass(self,inputs):
        return self.backend.softmax(inputs)

后端.py

import theano
import theano.tensor as T
import numpy
class NetworkBackend:
    def __init__(self,network):
        # initialize shared variables
        self.weights=[theano.shared(numpy.random.random((network.architecture[i+1],network.architecture[i]))) for i in range(len(network.architecture)-1)]
        self.bias=[theano.shared(numpy.random.random(network.architecture[i+1])) for i in range(len(network.architecture)-1)]
        self.layers=network.layers
        self.prev_rate=[theano.shared(numpy.zeros((network.architecture[i+1],network.architecture[i]))) for i in range(len(network.architecture)-1)]+[theano.shared(numpy.zeros(network.architecture[i+1])) for i in range(len(network.architecture)-1)]
        # activation for network layers
        inputs=T.dmatrix()
        temp=self.layers[0].forwardPass(inputs)
        for i in range(1,len(self.layers[:-1])):
            temp=self.layers[i].forwardPass(T.dot(temp,self.weights[i-1].transpose())+self.bias[i-1])
        output=self.layers[-1].forwardPass(T.dot(temp,self.weights[-1].transpose())+self.bias[-1])
        self.activate=theano.function([inputs],output)
        prediction=T.dmatrix()
        output=T.dmatrix()
        reg_lambda=T.dscalar()
        alpha=T.dscalar()
        momentum=T.dscalar()
        cost=T.nnet.categorical_crossentropy(prediction,output).mean()
        for i,j in zip(self.weights,self.bias):
            cost+=T.sum(i**2)*reg_lambda
            cost+=T.sum(j**2)*reg_lambda
        parameters=self.weights+self.bias
        rates=[(alpha*T.grad(cost,parameter)+momentum*prev_rate) for parameter,prev_rate in zip(parameters,self.prev_rate)]
        updates=[(weight,weight-rate) for weight,rate in zip(parameters,rates)]+[(prev_rate,rate) for prev_rate,rate in zip(self.prev_rate,rates)]
        self.backprop=theano.function([prediction,output,reg_lambda,alpha,momentum],cost,updates=updates)

class ComputationBackend:
    def __init__(self):
        # sigmoid activation
        self.sigmoid=T.nnet.sigmoid
        # softmax activation
        self.softmax=T.nnet.softmax

这可能是由参数初始化引起的。下面的代码示例使用具有单个隐藏层的神经网络来实现基本的XOR学习器。

import numpy
import theano
import theano.tensor as tt

def compile(input_size, hidden_size):
    w_h = theano.shared(numpy.random.standard_normal(size=(input_size, hidden_size)).astype(theano.config.floatX))
    b_h = theano.shared(numpy.zeros((hidden_size,), dtype=theano.config.floatX))
    w_y = theano.shared(numpy.zeros((hidden_size,), dtype=theano.config.floatX))
    b_y = theano.shared(numpy.zeros(1, dtype=theano.config.floatX), broadcastable=(True,))
    x = tt.matrix()
    z = tt.ivector()
    learning_rate = tt.scalar()
    h = tt.tanh(tt.dot(x, w_h) + b_h)
    y = tt.nnet.sigmoid(tt.dot(h, w_y) + b_y)
    cost = tt.nnet.binary_crossentropy(y, z).mean()
    updates = [(p, p - learning_rate * tt.grad(cost, p)) for p in [w_h, b_h, w_y, b_y]]
    return theano.function([x, z, learning_rate], outputs=cost, updates=updates), theano.function([x], outputs=y)

def main():
    numpy.random.seed(5)
    train, test = compile(2, 2)
    for _ in xrange(100000):
        print train([[1, 1], [1, 0], [0, 1], [0, 0]], [0, 1, 1, 0], 0.1)
    print test([[1, 1], [1, 0], [0, 1], [0, 0]])

main()

注意随机数生成器种子值。有了5的种子,学习者就会收敛于一个好的解决方案,并且在足够的时间内,看起来它正在趋向于一个完美的解决方案。然而,如果种子被改变为1,则网络陷入局部最优;它能够区分第二维度而不能区分第一维度。

不同的随机初始化方法可以产生更好的结果,即对RNG种子不那么敏感。

终于想通了!在NetworkBackend中,在计算成本时,我计算预期输出和作为参数传递给no函数的预测之间的交叉熵,而不是使用activate函数计算的预测。因此,o图不包含前向传递。因此,o.tensor.grad只找到正则化函数的梯度,而不是实际成本函数!因此正确的实现应该是:

inputs=T.dmatrix()
temp=self.layers[0].forwardPass(inputs)
for i in range(1,len(self.layers[:-1])):
    temp=self.layers[i].forwardPass(T.dot
    (temp,self.weights[i-1].transpose())+self.bias[i-1])
    output=self.layers[-1].forwardPass(T.dot(temp,self.weights[-1].
    transpose())+self.bias[-1])
self.activate=theano.function([inputs],output)
label=T.dmatrix()
reg_lambda=T.dscalar()
alpha=T.dscalar()
momentum=T.dscalar()
cost=T.nnet.categorical_crossentropy(output,label).mean()
for i,j in zip(self.weights,self.bias):
    cost+=T.sum(i**2)*reg_lambda
    cost+=T.sum(j**2)*reg_lambda
parameters=self.weights+self.bias
rates=[(alpha*T.grad(cost,parameter)+momentum*prev_rate) 
for parameter,prev_rate in zip(parameters,self.prev_rate)]
updates=[(weight,weight-rate) for weight,rate
 in zip(parameters,rates)]+[(prev_rate,rate) 
for prev_rate,rate in zip(self.prev_rate,rates)]
self.backprop=theano.function([inputs,label,reg_lambda,alpha,momentum],
cost,updates=updates)

因此,我没有为预测声明一个新的矩阵,而是使用激活函数中使用的相同方程来获取输入并计算训练函数中的预测。这就完成了无图,而无张量.grad()现在计算成本函数的梯度以及重新极化。

最新更新