尝试运行以下代码时会出现问题。这是住房价格的机器学习问题。
from sklearn.pipeline import FeatureUnion
from sklearn.preprocessing import StandardScaler
from sklearn.pipeline import Pipeline
from sklearn.base import BaseEstimator,TransformerMixin
num_attributes=list(housing_num)
cat_attributes=['ocean_proximity']
rooms_ix, bedrooms_ix, population_ix, household_ix = 3, 4, 5, 6
class DataFrameSelector(BaseEstimator,TransformerMixin):
def __init__(self,attribute_names):
self.attribute_names=attribute_names
def fit(self,X,y=None):
return self
def transform(self,X,y=None):
return X[self.attribute_names].values
class CombinedAttributesAdder(BaseEstimator, TransformerMixin):
def __init__(self, add_bedrooms_per_room = True): # no *args or **kargs
self.add_bedrooms_per_room = add_bedrooms_per_room
def fit(self, X,y=None):
return self # nothing else to do
def transform(self, X,y=None):
rooms_per_household = X[:, rooms_ix] / X[:, household_ix]
population_per_household = X[:, population_ix] / X[:, household_ix]
if self.add_bedrooms_per_room:
bedrooms_per_room = X[:, bedrooms_ix] / X[:, rooms_ix]
return np.c_[X, rooms_per_household, population_per_household, bedrooms_per_room]
else:
return np.c_[X, rooms_per_household, population_per_household]
num_pipeline=Pipeline([
('selector',DataFrameSelector(num_attributes)),
('imputer',Imputer(strategy="median")),
('attribs_adder',CombinedAttributesAdder()),
('std_scalar',StandardScaler()),
])
cat_pipeline=Pipeline([
('selector',DataFrameSelector(cat_attributes)),
('label_binarizer',LabelBinarizer()),
])
full_pipeline=FeatureUnion(transformer_list=[
("num_pipeline",num_pipeline),
("cat_pipeline",cat_pipeline),
])
当我尝试运行时出现错误:
housing_prepared = full_pipeline.fit_transform(housing)
,错误显示为:
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-141-acd0fd68117b> in <module>()
----> 1 housing_prepared = full_pipeline.fit_transform(housing)
/Users/nieguangtao/ml/env_1/lib/python2.7/site-packages/sklearn/pipeline.pyc in fit_transform(self, X, y, **fit_params)
744 delayed(_fit_transform_one)(trans, weight, X, y,
745 **fit_params)
--> 746 for name, trans, weight in self._iter())
747
748 if not result:
/Users/nieguangtao/ml/env_1/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
777 # was dispatched. In particular this covers the edge
778 # case of Parallel used with an exhausted iterator.
--> 779 while self.dispatch_one_batch(iterator):
780 self._iterating = True
781 else:
/Users/nieguangtao/ml/env_1/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in dispatch_one_batch(self, iterator)
623 return False
624 else:
--> 625 self._dispatch(tasks)
626 return True
627
/Users/nieguangtao/ml/env_1/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in _dispatch(self, batch)
586 dispatch_timestamp = time.time()
587 cb = BatchCompletionCallBack(dispatch_timestamp, len(batch), self)
--> 588 job = self._backend.apply_async(batch, callback=cb)
589 self._jobs.append(job)
590
/Users/nieguangtao/ml/env_1/lib/python2.7/site-packages/sklearn/externals/joblib/_parallel_backends.pyc in apply_async(self, func, callback)
109 def apply_async(self, func, callback=None):
110 """Schedule a func to be run"""
--> 111 result = ImmediateResult(func)
112 if callback:
113 callback(result)
/Users/nieguangtao/ml/env_1/lib/python2.7/site-packages/sklearn/externals/joblib/_parallel_backends.pyc in __init__(self, batch)
330 # Don't delay the application, to avoid keeping the input
331 # arguments in memory
--> 332 self.results = batch()
333
334 def get(self):
/Users/nieguangtao/ml/env_1/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self)
129
130 def __call__(self):
--> 131 return [func(*args, **kwargs) for func, args, kwargs in self.items]
132
133 def __len__(self):
/Users/nieguangtao/ml/env_1/lib/python2.7/site-packages/sklearn/pipeline.pyc in _fit_transform_one(transformer, weight, X, y, **fit_params)
587 **fit_params):
588 if hasattr(transformer, 'fit_transform'):
--> 589 res = transformer.fit_transform(X, y, **fit_params)
590 else:
591 res = transformer.fit(X, y, **fit_params).transform(X)
/Users/nieguangtao/ml/env_1/lib/python2.7/site-packages/sklearn/pipeline.pyc in fit_transform(self, X, y, **fit_params)
290 Xt, fit_params = self._fit(X, y, **fit_params)
291 if hasattr(last_step, 'fit_transform'):
--> 292 return last_step.fit_transform(Xt, y, **fit_params)
293 elif last_step is None:
294 return Xt
TypeError: fit_transform() takes exactly 2 arguments (3 given)
so 我的第一个Questio n是原因是原因吗?
得到此错误后,我试图弄清楚为什么我会一个人运行上述变压器:
DFS=DataFrameSelector(num_attributes)
a1=DFS.fit_transform(housing)
imputer=Imputer(strategy='median')
a2=imputer.fit_transform(a1)
CAA=CombinedAttributesAdder()
a3=CAA.fit_transform(a2)
SS=StandardScaler()
a4=SS.fit_transform(a3)
DFS2=DataFrameSelector(cat_attributes)
b1=DFS2.fit_transform(housing)
LB=LabelBinarizer()
b2=LB.fit_transform(b1)
result=np.concatenate((a4,b2),axis=1)
这些可以正确执行,除了我得到的 result 是一个numpy.ndarray,大小(16512,16),而 housing_prepared = full_pipeline.fit_transform(housing)
的预期结果应该是bumpy.ndarray。17)。所以这是我的第二个问题,为什么会导致差异?
外壳是一个大小(16512,9),只有1个分类功能和8个数值功能的数据框。
预先感谢您。
看起来Sklearn以另一种方式标识数据类型。确保将数字识别为INT。最简单的方法:使用"您的"已发布的编码作者提供的数据。Aurelien Geron动手进行机器学习
我在完成这本书时遇到了这个问题。在尝试了一堆解决方法(我觉得这是浪费时间)之后,我屈服并安装了Scikit-Learn V0.20 Dev。在此处下载轮子并使用PIP安装。这应该使您可以使用旨在解决这些问题的分类辅助编码类。
我遇到了同样的问题,这是由于缩进问题而引起的,该问题不会总是丢下错误(请参阅https://stackoverflow.com/a/14046894/3665886)。
如果您直接从书中复制代码,请确保正确缩进了代码。
- typeError:fit_transform()精确2个参数(3给定)
为什么这个错误?
答案:因为您使用的是labelbinarizer(),它非常适合响应变量。
该怎么办?:您有一些选择:
- 使用onehotencoder()代替
- 编写labelbinarizer的自定义变压器
- 使用支持您的代码的旧版本的Sklean版本
- housing_prepared 的形状差异
如果您使用的是这些数据,则拥有9个预测变量(8个数值&amp; 1分类)。CombinedAttributesAdder()添加了3列和LabelBinarizer()增加了5个,因此它变为17列
请记住, sklearn.pipeline.featureunion串联多个变压器对象的结果
手动进行操作时,您不会添加原始的" Ocean_Proximity"变量。
让我们在行动中查看它:
print("housing_shape: ", housing.shape)
num_attribs = list(housing_num)
cat_attribs = ["ocean_proximity"]
DFS=DataFrameSelector(num_attribs)
a1=DFS.fit_transform(housing)
print('Numerical variables_shape: ', a1.shape)
imputer=SimpleImputer(strategy='median')
a2=imputer.fit_transform(a1)
a2.shape
与A1.Shape
相同CAA=CombinedAttributesAdder()
a3=CAA.fit_transform(a2)
SS=StandardScaler()
a4=SS.fit_transform(a3) # added 3 variables
print('Numerical variable shape after CAA: ', a4.shape, 'n')
DFS2=DataFrameSelector(cat_attribs)
b1=DFS2.fit_transform(housing)
print("Categorical variables_shape: ", b1.shape)
LB=LabelBinarizer()
b2=LB.fit_transform(b1) # instead of one column now we have 5 columns
print('categorical variable shape after LabelBinarization: ', b2.shape)
4列增加
print(b2)
result=np.concatenate((a4,b2),axis=1)
print('final shape: ', result.shape, 'n') # Final shape
注意:转换的列(A4的结果)和二进制列(B2的结果)尚未添加到原始数据框架中。为此,您需要将numpy Array B2转换为数据框架
new_features = pd.DataFrame(a4)
new_features.shape
ocean_cat = ['<1H OCEAN', 'INLAND', 'NEAR OCEAN', 'NEAR BAY', 'ISLAND']
ocean_LabelBinarize = pd.DataFrame(b2, columns=[ocean_cat[i] for i in
range(len(ocean_cat))])
ocean_LabelBinarize
housing_prepared_new = pd.concat([new_features, ocean_LabelBinarize],
axis=1)
print('Shape of new data prepared by above steps',
housing_prepared_new.shape)
当我们使用管道时,它也将原始(Ocean_Proximity)变量保留,并且新创建的二进制列也