作为我的操作系统的一部分,我编写了这个读取扇区函数。
从BIOS设备id中读取扇区地址。但是,当我设置从扇区19读取(头:0,轨道:1,扇区2)时,0x1000:0x0000的结果可能超过了该扇区(我用十六进制查看器检查了几次)。
同样,当我读取多个扇区时,包括扇区19,在上面提到的地址,我可以读取在0x1000:(512*19)处复制的扇区19,而不会出现问题。
void __NOINLINE resetDisk(const int device_id) {
__asm__ __volatile__("" : : "d"(0x0000|device_id)); //set device id
__asm__ __volatile__("mov $0x0000,%ax"); //function 0x02
__asm__ __volatile__("int $0x13");
}
void __NOINLINE readDiskSector(const int sector, const int device_id) {
resetDisk(device_id);
int sector_count = 2880;
int heads = 2;
int tracks = 18;
int h = sector/(sector_count/heads);
int c = (sector-h*(sector_count/heads))/tracks;
int s = sector-c*tracks-h*(sector_count/heads)+1;
__asm__ __volatile__("push %es");
__asm__ __volatile__("" : : "a"(c));
__asm__ __volatile__("" : : "b"(s));
__asm__ __volatile__("mov %al,%ch");
__asm__ __volatile__("mov %bl,%cl");
__asm__ __volatile__("" : : "a"(h));
__asm__ __volatile__("" : : "b"(device_id));
__asm__ __volatile__("mov %al,%dh");
__asm__ __volatile__("mov %bl,%dl");
__asm__ __volatile__("mov $0x03,%si");
__asm__ __volatile__("try_again_reading:");
__asm__ __volatile__("cmp $0x00,%si");
__asm__ __volatile__("je stop_trying");
__asm__ __volatile__("mov $0x1000,%bx");
__asm__ __volatile__("mov %bx,%es");
__asm__ __volatile__("mov $0x0000,%bx");
__asm__ __volatile__("mov $0x02,%ah");
__asm__ __volatile__("mov $0x01,%al");
__asm__ __volatile__("int $0x13");
__asm__ __volatile__("dec %si");
__asm__ __volatile__("jc try_again_reading");
__asm__ __volatile__("stop_trying:");
__asm__ __volatile__("pop %es");
}
从适当的GCC基本内联汇编和扩展内联汇编的角度来看,代码有一些严重的问题,但从根本上说,访问逻辑块地址19 (LBA)的问题在于计算。LBA 19是CHS(柱头,磁头,扇区)=(0,1,2),其中OP建议它是(磁头:0,磁头:1,扇区2),这是不正确的。
Int 13h/ah=2取CHS值。您可以使用以下公式(或等价)将LBA转换为CHS值:
C = (LBA ÷ SPT) ÷ HPC H = (LBA ÷ SPT) mod HPC S = (LBA mod SPT) + 1
HPC = Heads per cylinder (aka Number of Heads) SPT = Sectors per Track, LBA = logical block address
"mod" is the modulo operator (to get the remainder of a division)
我已经写了更多关于LBA到CHS计算的其他Stackoverflow答案在LBA到CHS的翻译。
一个观察结果是,最大扇区数根本不考虑到这个方程。这里真正的问题是OP的公式不正确:
int sector_count = 2880;
int heads = 2; /* Head per cylinder */
int tracks = 18; /* Sectors per Track */
int h = sector/(sector_count/heads);
int c = (sector-h*(sector_count/heads))/tracks;
int s = sector-c*tracks-h*(sector_count/heads)+1;
等式中唯一产生正确结果(以一种近似的方式)的部分是s
(扇区)。c
(汽缸)和h
(水头)计算错误。正因为如此,它导致了问题和OP后续回答中观察到的问题。为了了解OP方程产生的值,我编写了一个程序,使用适当的公式将它们的值与正确的值进行比较:
LBA = 0: CHS = ( 0, 0, 1) | CHS = ( 0, 0, 1)
LBA = 1: CHS = ( 0, 0, 2) | CHS = ( 0, 0, 2)
LBA = 2: CHS = ( 0, 0, 3) | CHS = ( 0, 0, 3)
LBA = 3: CHS = ( 0, 0, 4) | CHS = ( 0, 0, 4)
LBA = 4: CHS = ( 0, 0, 5) | CHS = ( 0, 0, 5)
LBA = 5: CHS = ( 0, 0, 6) | CHS = ( 0, 0, 6)
LBA = 6: CHS = ( 0, 0, 7) | CHS = ( 0, 0, 7)
LBA = 7: CHS = ( 0, 0, 8) | CHS = ( 0, 0, 8)
LBA = 8: CHS = ( 0, 0, 9) | CHS = ( 0, 0, 9)
LBA = 9: CHS = ( 0, 0, 10) | CHS = ( 0, 0, 10)
LBA = 10: CHS = ( 0, 0, 11) | CHS = ( 0, 0, 11)
LBA = 11: CHS = ( 0, 0, 12) | CHS = ( 0, 0, 12)
LBA = 12: CHS = ( 0, 0, 13) | CHS = ( 0, 0, 13)
LBA = 13: CHS = ( 0, 0, 14) | CHS = ( 0, 0, 14)
LBA = 14: CHS = ( 0, 0, 15) | CHS = ( 0, 0, 15)
LBA = 15: CHS = ( 0, 0, 16) | CHS = ( 0, 0, 16)
LBA = 16: CHS = ( 0, 0, 17) | CHS = ( 0, 0, 17)
LBA = 17: CHS = ( 0, 0, 18) | CHS = ( 0, 0, 18)
LBA = 18: CHS = ( 1, 0, 1) | CHS = ( 0, 1, 1)
LBA = 19: CHS = ( 1, 0, 2) | CHS = ( 0, 1, 2)
LBA = 20: CHS = ( 1, 0, 3) | CHS = ( 0, 1, 3)
LBA = 21: CHS = ( 1, 0, 4) | CHS = ( 0, 1, 4)
LBA = 22: CHS = ( 1, 0, 5) | CHS = ( 0, 1, 5)
LBA = 23: CHS = ( 1, 0, 6) | CHS = ( 0, 1, 6)
LBA = 24: CHS = ( 1, 0, 7) | CHS = ( 0, 1, 7)
LBA = 25: CHS = ( 1, 0, 8) | CHS = ( 0, 1, 8)
LBA = 26: CHS = ( 1, 0, 9) | CHS = ( 0, 1, 9)
LBA = 27: CHS = ( 1, 0, 10) | CHS = ( 0, 1, 10)
LBA = 28: CHS = ( 1, 0, 11) | CHS = ( 0, 1, 11)
LBA = 29: CHS = ( 1, 0, 12) | CHS = ( 0, 1, 12)
LBA = 30: CHS = ( 1, 0, 13) | CHS = ( 0, 1, 13)
LBA = 31: CHS = ( 1, 0, 14) | CHS = ( 0, 1, 14)
LBA = 32: CHS = ( 1, 0, 15) | CHS = ( 0, 1, 15)
LBA = 33: CHS = ( 1, 0, 16) | CHS = ( 0, 1, 16)
LBA = 34: CHS = ( 1, 0, 17) | CHS = ( 0, 1, 17)
LBA = 35: CHS = ( 1, 0, 18) | CHS = ( 0, 1, 18)
LBA = 36: CHS = ( 2, 0, 1) | CHS = ( 1, 0, 1)
LBA = 37: CHS = ( 2, 0, 2) | CHS = ( 1, 0, 2)
LBA = 38: CHS = ( 2, 0, 3) | CHS = ( 1, 0, 3)
LBA = 39: CHS = ( 2, 0, 4) | CHS = ( 1, 0, 4)
LBA = 40: CHS = ( 2, 0, 5) | CHS = ( 1, 0, 5)
LBA = 41: CHS = ( 2, 0, 6) | CHS = ( 1, 0, 6)
LBA = 42: CHS = ( 2, 0, 7) | CHS = ( 1, 0, 7)
LBA = 43: CHS = ( 2, 0, 8) | CHS = ( 1, 0, 8)
LBA = 44: CHS = ( 2, 0, 9) | CHS = ( 1, 0, 9)
LBA = 45: CHS = ( 2, 0, 10) | CHS = ( 1, 0, 10)
LBA = 46: CHS = ( 2, 0, 11) | CHS = ( 1, 0, 11)
LBA = 47: CHS = ( 2, 0, 12) | CHS = ( 1, 0, 12)
LBA = 48: CHS = ( 2, 0, 13) | CHS = ( 1, 0, 13)
LBA = 49: CHS = ( 2, 0, 14) | CHS = ( 1, 0, 14)
LBA = 50: CHS = ( 2, 0, 15) | CHS = ( 1, 0, 15)
LBA = 51: CHS = ( 2, 0, 16) | CHS = ( 1, 0, 16)
LBA = 52: CHS = ( 2, 0, 17) | CHS = ( 1, 0, 17)
LBA = 53: CHS = ( 2, 0, 18) | CHS = ( 1, 0, 18)
LBA = 54: CHS = ( 3, 0, 1) | CHS = ( 1, 1, 1)
LBA = 55: CHS = ( 3, 0, 2) | CHS = ( 1, 1, 2)
LBA = 56: CHS = ( 3, 0, 3) | CHS = ( 1, 1, 3)
LBA = 57: CHS = ( 3, 0, 4) | CHS = ( 1, 1, 4)
LBA = 58: CHS = ( 3, 0, 5) | CHS = ( 1, 1, 5)
LBA = 59: CHS = ( 3, 0, 6) | CHS = ( 1, 1, 6)
LBA = 60: CHS = ( 3, 0, 7) | CHS = ( 1, 1, 7)
LBA = 61: CHS = ( 3, 0, 8) | CHS = ( 1, 1, 8)
LBA = 62: CHS = ( 3, 0, 9) | CHS = ( 1, 1, 9)
LBA = 63: CHS = ( 3, 0, 10) | CHS = ( 1, 1, 10)
LBA = 64: CHS = ( 3, 0, 11) | CHS = ( 1, 1, 11)
LBA = 65: CHS = ( 3, 0, 12) | CHS = ( 1, 1, 12)
LBA = 66: CHS = ( 3, 0, 13) | CHS = ( 1, 1, 13)
LBA = 67: CHS = ( 3, 0, 14) | CHS = ( 1, 1, 14)
LBA = 68: CHS = ( 3, 0, 15) | CHS = ( 1, 1, 15)
LBA = 69: CHS = ( 3, 0, 16) | CHS = ( 1, 1, 16)
LBA = 70: CHS = ( 3, 0, 17) | CHS = ( 1, 1, 17)
LBA = 71: CHS = ( 3, 0, 18) | CHS = ( 1, 1, 18)
LBA = 72: CHS = ( 4, 0, 1) | CHS = ( 2, 0, 1)
LBA = 73: CHS = ( 4, 0, 2) | CHS = ( 2, 0, 2)
LBA = 74: CHS = ( 4, 0, 3) | CHS = ( 2, 0, 3)
LBA = 75: CHS = ( 4, 0, 4) | CHS = ( 2, 0, 4)
LBA = 76: CHS = ( 4, 0, 5) | CHS = ( 2, 0, 5)
LBA = 77: CHS = ( 4, 0, 6) | CHS = ( 2, 0, 6)
LBA = 78: CHS = ( 4, 0, 7) | CHS = ( 2, 0, 7)
LBA = 79: CHS = ( 4, 0, 8) | CHS = ( 2, 0, 8)
...
左边是OP的结果,右边是正确的结果。LBA 0到LBA 17正确。如果开始读取LBA小于18的一个或多个扇区,则将是正确的。如果您使用CHS为LBA 19计算的值,它们是不正确的。
OP建议在他们的回答中,柱体和封头值的文档是不正确的,并且寄存器是相反的。文档正确:
AL = number of sectors to read (must be nonzero)
CH = low eight bits of cylinder number
CL = sector number 1-63 (bits 0-5)
high two bits of cylinder (bits 6-7, hard disk only)
DH = head number
DL = drive number (bit 7 set for hard disk)
ES:BX -> data buffer
OP的答案建议修复是交换头部和圆柱体周围。事实上,这恰好使他的代码在LBA 0到LBA 35之间都能正常工作。LBA>= 36不正确。
解决方法是在OP的代码中使用适当的计算:
c = (sector / tracks) / heads;
h = (sector / tracks) % heads;
s = (sector % tracks) + 1;
测试LBA到CHS方程的代码
#include <stdio.h>
int main()
{
const int sector_count = 2880;
const int heads = 2;
const int tracks = 18; /* tracks per sector */
unsigned char h, h2;
unsigned char c, c2;
unsigned char s, s2;
int sector; /* LBA */
for (sector=0; sector < sector_count; sector++) {
/* Improper calculation */
h = sector/(sector_count/heads);
c = (sector-h*(sector_count/heads))/tracks;
s = sector-c*tracks-h*(sector_count/heads)+1;
/* Proper calculation */
c2 = (sector / tracks) / heads;
h2 = (sector / tracks) % heads;
s2 = (sector % tracks) + 1;
printf ("LBA = %4d: CHS = (%2d, %2d, %2d) | CHS = (%2d, %2d, %2d)n",
sector, c, h, s, c2, h2, s2);
}
return 0;
}
使用内联汇编执行磁盘读取的GCC示例代码
biosdisk.h
#ifndef BIOSDISK_H
#define BIOSDISK_H
#include <stdint.h>
/* BIOS Parameter Block (BPB) on floppy media */
typedef struct __attribute__((packed)) {
char OEMname[8];
uint16_t bytesPerSector;
uint8_t sectPerCluster;
uint16_t reservedSectors;
uint8_t numFAT;
uint16_t numRootDirEntries;
uint16_t numSectors;
uint8_t mediaType;
uint16_t numFATsectors;
uint16_t sectorsPerTrack;
uint16_t numHeads;
uint32_t numHiddenSectors;
uint32_t numSectorsHuge;
uint8_t driveNum;
uint8_t reserved;
uint8_t signature;
uint32_t volumeID;
char volumeLabel[11];
char fileSysType[8];
} disk_bpb_s;
/* State information for CHS disk accesses */
typedef struct __attribute__((packed)) {
uint16_t segment;
uint16_t offset;
uint16_t status;
/* Drive geometry needed to compute CHS from LBA */
uint16_t sectorsPerTrack;
uint16_t numHeads;
/* Disk parameters */
uint16_t cylinder;
uint8_t head;
uint8_t sector;
uint8_t driveNum;
uint8_t numSectors; /* # of sectors to read */
/* Number of retries for disk operations */
uint8_t retries;
} disk_info_s;
extern fastcall uint8_t
reset_disk (disk_info_s *const disk_info);
extern fastcall uint8_t
read_sector_chs (disk_info_s *const disk_info);
/* Forced inline version of reset_sector */
static inline fastcall always_inline uint8_t
reset_disk_i (disk_info_s *const disk_info)
{
uint16_t temp_ax = 0x0000;
uint8_t carryf;
__asm__ __volatile__ (
"int $0x13nt"
#ifdef __GCC_ASM_FLAG_OUTPUTS__
: [cf]"=@ccc"(carryf),
#else
"setc %[cf]nt"
: [cf]"=qm"(carryf),
#endif
"+a"(temp_ax)
: "d"(disk_info->driveNum)
: "cc");
disk_info->status = temp_ax;
return (carryf);
}
/* Forced inline version of read_sector */
static inline fastcall always_inline uint8_t
read_sector_chs_i (disk_info_s *const disk_info)
{
uint16_t temp_ax;
uint16_t temp_dx;
uint8_t carryf = 0;
uint8_t retry_count = 0;
#ifndef BUGGY_BIOS_SUPPORT
temp_dx = (disk_info->head << 8) | disk_info->driveNum;
#endif
do {
/* Only reset disk if error detected previously */
if (carryf)
reset_disk_i (disk_info);
/* Need to reload AX during each iteration since a previous
* int 0x13 call will destroy its contents. There was a bug on
* earlier BIOSes where DX may have been clobbered.
*/
temp_ax = (0x02 << 8) | disk_info->numSectors;
#ifdef BUGGY_BIOS_SUPPORT
temp_dx = (disk_info->head << 8) | disk_info->driveNum;
#endif
__asm__ __volatile__ (
"push %%esnt"
"mov %w[seg], %%esnt"
#ifdef BUGGY_BIOS_SUPPORT
"stcnt" /* Some early bioses have CF bug */
"int $0x13nt"
"stint" /* Some early bioses don't re-enable interrupts */
#else
"int $0x13nt"
#endif
"pop %%esnt"
#ifdef __GCC_ASM_FLAG_OUTPUTS__
: [cf]"=@ccc"(carryf),
#else
"setc %[cf]nt"
: [cf]"=qm"(carryf),
#endif
#ifdef BUGGY_BIOS_SUPPORT
"+a"(temp_ax),
"+d"(temp_dx)
:
#else
"+a"(temp_ax)
:
"d"(temp_dx),
#endif
"c"(((disk_info->cylinder & 0xff) << 8) |
((disk_info->cylinder >> 2) & 0xC0) |
(disk_info->sector & 0x3f)),
"b"(disk_info->offset),
[seg]"r"(disk_info->segment)
: "memory", "cc");
} while (carryf && (++retry_count < disk_info->retries));
disk_info->status = temp_ax;
return (carryf);
}
/* Forced inline version of read_sector_lba */
static inline fastcall always_inline uint8_t
read_sector_lba_i (disk_info_s *const disk_info, const uint32_t lba)
{
disk_info->cylinder = lba / disk_info->sectorsPerTrack / disk_info->numHeads;
disk_info->head = (lba / disk_info->sectorsPerTrack) % disk_info->numHeads;
disk_info->sector = (lba % disk_info->sectorsPerTrack) + 1;
return read_sector_chs_i (disk_info);
}
#endif
biosdisk.c :
#include <stdint.h>
#include "biosdisk.h"
fastcall uint8_t
reset_disk (disk_info_s *const disk_info)
{
return reset_disk_i (disk_info);
}
fastcall uint8_t
read_sector_chs (disk_info_s *const disk_info)
{
return read_sector_chs_i (disk_info);
}
fastcall uint8_t
read_sector_lba (disk_info_s *const disk_info, const uint32_t lba)
{
return read_sector_lba_i (disk_info, lba);
}
x86helper.h :
#ifndef X86HELPER_H
#define X86HELPER_H
#define fastcall __attribute__((regparm(3)))
/* noreturn lets GCC know that a function that it may detect
won't exit is intentional */
#define noreturn __attribute__((noreturn))
#define always_inline __attribute__((always_inline))
#define used __attribute__((used))
#endif
在我的网站
上可以找到一个在GCC中创建2阶段引导加载程序的小概念证明项目指出
Int 13h/AH=0h复位磁盘系统。此操作在软盘等实际硬件上可能会花费相当多的时间,因为它还需要重新校准驱动器磁头。只有在检测到错误后,在重试磁盘操作之前,才应该重置磁盘。
使用GCC创建将在realmode下运行的代码是有问题的。用
-m16
生成的代码一般只能在80386或更高版本的处理器上运行。编译器不保证多个
asm
语句按照它们在代码中出现的顺序发出。您应该将多个asm
语句合并为一个语句。GCC文档是这样说的:
不要期望asm语句序列在编译后保持完全连续,即使在使用volatile限定符时也是如此。如果某些指令需要在输出中保持连续,则将它们放在单个多指令asm语句中。
如果你修改了GCC的内联程序集中的寄存器,你应该告诉编译器。使用GCC的扩展内联程序集,并在clobber列表中列出修改过的寄存器。
尽量减少内联汇编到最低限度,并利用尽可能多的C代码。David Wohlferd写了一篇很好的文章,阐述了不使用内联汇编的原因。如果你不理解内联汇编的细微差别,那么你可以考虑在一个单独的汇编语言模块中编写代码,并将其链接到你的C程序。
GCC没有realmode的20位段偏移寻址的概念,这使得事情过于复杂和臃肿。除了使用GCC,还有其他选择在C中开发16位代码,如Open Watcom C/c++;Alexey Frunze的小型C编译器;或GCC的实验性ia16-gcc交叉编译器端口
如果操作失败,则会修改ah
的值。您的代码假定它不会被更改。