R导入半非结构化数据CSV



我习惯于将带有列标题和单个表的直接csv加载到R中,我有一个具有以下结构的大型csv文件:

+-----------+---------+--------+---------+--------+---------+
| file_name |         |        |         |        |         |
+-----------+---------+--------+---------+--------+---------+
| table1    |         |        |         |        |         |
+-----------+---------+--------+---------+--------+---------+
| Var1      | Var2    | Var3   | Var4    | Var5   | Var6    |
+-----------+---------+--------+---------+--------+---------+
| 198824    | 198824  | 198824 | 198824  | 198824 | 198824  |
+-----------+---------+--------+---------+--------+---------+
| 123       | 1234    | 1242   | 124     | 1241   | 1232    |
+-----------+---------+--------+---------+--------+---------+
|           |         |        |         |        |         |
+-----------+---------+--------+---------+--------+---------+
|           |         |        |         |        |         |
+-----------+---------+--------+---------+--------+---------+
| file_name |         |        |         |        |         |
+-----------+---------+--------+---------+--------+---------+
| table2    |         |        |         |        |         |
+-----------+---------+--------+---------+--------+---------+
| Var1      | Var2    | Var3   | Var4    | Var5   | Var6    |
+-----------+---------+--------+---------+--------+---------+
| x         | x       | x      | x       | x      | x       |
+-----------+---------+--------+---------+--------+---------+
| y         | y       | y      | y       | y      | y       |
+-----------+---------+--------+---------+--------+---------+
| z         | z       | z      | z       | z      | z       |
+-----------+---------+--------+---------+--------+---------+
|           |         |        |         |        |         |
+-----------+---------+--------+---------+--------+---------+
|           |         |        |         |        |         |
+-----------+---------+--------+---------+--------+---------+
| file_name |         |        |         |        |         |
+-----------+---------+--------+---------+--------+---------+
| table3    |         |        |         |        |         |
+-----------+---------+--------+---------+--------+---------+
| Var1      | Var2    | Var3   | Var4    | Var5   | Var6    |
+-----------+---------+--------+---------+--------+---------+
| 532523    | 25235   | 532523 | 25235   | 532523 | 25235   |
+-----------+---------+--------+---------+--------+---------+
| 25332     | 5325235 | 25332  | 5325235 | 25332  | 5325235 |
+-----------+---------+--------+---------+--------+---------+

数据并非完全非结构化,因为它遵循以下模式:
第一行只有文件名:file_name
第二行有表:table1、table2、table3等。
实际的表本身,即从var1到var6的6列,其下有数据。
然后有2个空行,下一组将从重复自身的file_name开始,然后是下一个表号和其中的表

CSV中的所有表都遵循这种模式,但我甚至在将其加载到R中时都遇到了问题,当使用read.CSV((直接加载时,我会得到以下结果:

Error in read.table(file = file, header = header, sep = sep, quote = quote,  : 
more columns than column names

是否可以使用R将表号加载到一个数据帧中,并将var1-var6+表号作为列标题?

+--------+---------+--------+---------+--------+---------+--------------+
|  Var1  |  Var2   |  Var3  |  Var4   |  Var5  |  Var6   | table_number |
+--------+---------+--------+---------+--------+---------+--------------+
| 198824 | 198824  | 198824 | 198824  | 198824 | 198824  | table1       |
| 123    | 1234    | 1242   | 124     | 1241   | 1232    | table1       |
| x      | x       | x      | x       | x      | x       | table2       |
| y      | y       | y      | y       | y      | y       | table2       |
| z      | z       | z      | z       | z      | z       | table2       |
| 532523 | 25235   | 532523 | 25235   | 532523 | 25235   | table3       |
| 25332  | 5325235 | 25332  | 5325235 | 25332  | 5325235 | table3       |
+--------+---------+--------+---------+--------+---------+--------------+

请注意,每个表(表1、表2等(的行数具有不同的行数。

CSV文件总共有大约200个表,超过了Excel的限制(我认为大约有9MM行(

使用Brian的代码,以下是前几行:

> lines_all
[1] "name,,,,,"                      "table1,,,,,"                    "Var1,Var2,Var3,Var4,Var5,Var6"  "321,54312,321,54654,3564,54321"
[5] "45,54,4564,54,87,456"           ",,,,,"                          ",,,,,"                          "name,,,,,"                     
[9] "table2,,,,,"                    "Var1,Var2,Var3,Var4,Var5,Var6"  "ssvf,afs,fasf,afsaf,zxvz,zvx"   "saf,zvx,zz,z,zxvz,zxvzxv"      
[13] "zxvsaf,wr,wrw,afsaf,asf,af"     ",,,,,"                          ",,,,,"                          "name,,,,,"                     
[17] "table3,,,,,"                    "Var1,Var2,Var3,Var4,Var5,Var6"  "1,2,3,4,5,6"                    "7,8,9,10,11,12"                
[21] "13,14,15,16,17,18"              "19,20,21,22,23,24"    

使用此文件:

file_name
table1
Var1, Var2, Var3, Var4, Var5, Var6
198824, 198824, 198824, 198824, 198824, 198824
123, 1234, 1242, 124, 1241, 1232


file_name
table2
Var1, Var2, Var3, Var4, Var5, Var6
x, x, x, x, x, x
y, y, y, y, y, y
z, z, z, z, z, z


file_name
table3
Var1, Var2, Var3, Var4, Var5, Var6
532523, 25235, 532523, 25235, 532523, 25235
25332, 5325235, 25332, 5325235, 25332, 5325235

首先将所有内容作为字符向量读取。

library(readr)
library(stringr)
library(purrr)
library(dplyr)
# Could be done in base R, but {readr} will be faster on a large file
# read in all lines
lines_all <- read_lines("nested_tables.txt")
lines_all
#>  [1] "file_name"                                     
#>  [2] "table1"                                        
#>  [3] "Var1, Var2, Var3, Var4, Var5, Var6"            
#>  [4] "198824, 198824, 198824, 198824, 198824, 198824"
#>  [5] "123, 1234, 1242, 124, 1241, 1232"              
#>  [6] ""                                              
#>  [7] ""                                              
#>  [8] ""                                              
#>  [9] ""                                              
#> [10] ""                                              
#> [11] "file_name"                                     
#> [12] "table2"                                        
#> [13] "Var1, Var2, Var3, Var4, Var5, Var6"            
#> [14] "x, x, x, x, x, x"                              
#> [15] "y, y, y, y, y, y"                              
#> [16] "z, z, z, z, z, z"                              
#> [17] ""                                              
#> [18] ""                                              
#> [19] ""                                              
#> [20] ""                                              
#> [21] ""                                              
#> [22] "file_name"                                     
#> [23] "table3"                                        
#> [24] "Var1, Var2, Var3, Var4, Var5, Var6"            
#> [25] "532523, 25235, 532523, 25235, 532523, 25235"   
#> [26] "25332, 5325235, 25332, 5325235, 25332, 5325235"

在每个字符串中搜索与您的表名匹配的正则表达式。您可能需要调整匹配模式:"table[0-9]"以匹配您的实际姓名。

# find where there's a string like "table1"
table_id_indices <- str_detect(lines_all, "table[0-9]")
table_id_indices
#>  [1] FALSE  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [12]  TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
#> [23]  TRUE FALSE FALSE FALSE
# extract the table names in order
table_id_names <- lines_all[table_id_indices]
table_id_names
#> [1] "table1" "table2" "table3"

现在您已经有了一个字符串向量,以及每个ID开始的索引,您可以将向量分解。

# split the vector of lines into a list of vectors
# `cumsum` is a handy trick to "fill" from one TRUE value to the next
lines_chunked <- split(lines_all, cumsum(table_id_indices))
lines_chunked
#> $`0`
#> [1] "file_name"
#> 
#> $`1`
#>  [1] "table1"                                        
#>  [2] "Var1, Var2, Var3, Var4, Var5, Var6"            
#>  [3] "198824, 198824, 198824, 198824, 198824, 198824"
#>  [4] "123, 1234, 1242, 124, 1241, 1232"              
#>  [5] ""                                              
#>  [6] ""                                              
#>  [7] ""                                              
#>  [8] ""                                              
#>  [9] ""                                              
#> [10] "file_name"                                     
#> 
#> $`2`
#>  [1] "table2"                            
#>  [2] "Var1, Var2, Var3, Var4, Var5, Var6"
#>  [3] "x, x, x, x, x, x"                  
#>  [4] "y, y, y, y, y, y"                  
#>  [5] "z, z, z, z, z, z"                  
#>  [6] ""                                  
#>  [7] ""                                  
#>  [8] ""                                  
#>  [9] ""                                  
#> [10] ""                                  
#> [11] "file_name"                         
#> 
#> $`3`
#> [1] "table3"                                        
#> [2] "Var1, Var2, Var3, Var4, Var5, Var6"            
#> [3] "532523, 25235, 532523, 25235, 532523, 25235"   
#> [4] "25332, 5325235, 25332, 5325235, 25332, 5325235"

要使行可读,请删除所有非表行。

# remove lines that don't have commas, since they're not tables
lines_chunked_cleaned <- map(lines_chunked, ~str_subset(.x, ",")) %>% compact()
lines_chunked_cleaned
#> $`1`
#> [1] "Var1, Var2, Var3, Var4, Var5, Var6"            
#> [2] "198824, 198824, 198824, 198824, 198824, 198824"
#> [3] "123, 1234, 1242, 124, 1241, 1232"              
#> 
#> $`2`
#> [1] "Var1, Var2, Var3, Var4, Var5, Var6"
#> [2] "x, x, x, x, x, x"                  
#> [3] "y, y, y, y, y, y"                  
#> [4] "z, z, z, z, z, z"                  
#> 
#> $`3`
#> [1] "Var1, Var2, Var3, Var4, Var5, Var6"            
#> [2] "532523, 25235, 532523, 25235, 532523, 25235"   
#> [3] "25332, 5325235, 25332, 5325235, 25332, 5325235"

现在,列表中的每个元素都可以作为CSV读取。

# read in each vector of lines as a CSV
# forcing a default col_type prevents binding errors later
lines_chunked_csvs <- map(lines_chunked_cleaned, ~read_csv(.x, col_types = cols(.default = "c")))
lines_chunked_csvs
#> $`1`
#> # A tibble: 2 x 6
#>   Var1   Var2   Var3   Var4   Var5   Var6  
#>   <chr>  <chr>  <chr>  <chr>  <chr>  <chr> 
#> 1 198824 198824 198824 198824 198824 198824
#> 2 123    1234   1242   124    1241   1232  
#> 
#> $`2`
#> # A tibble: 3 x 6
#>   Var1  Var2  Var3  Var4  Var5  Var6 
#>   <chr> <chr> <chr> <chr> <chr> <chr>
#> 1 x     x     x     x     x     x    
#> 2 y     y     y     y     y     y    
#> 3 z     z     z     z     z     z    
#> 
#> $`3`
#> # A tibble: 2 x 6
#>   Var1   Var2    Var3   Var4    Var5   Var6   
#>   <chr>  <chr>   <chr>  <chr>   <chr>  <chr>  
#> 1 532523 25235   532523 25235   532523 25235  
#> 2 25332  5325235 25332  5325235 25332  5325235

使用前面的名称来识别每个数据帧并绑定它们。

# name the list of tables, bind everything together
bind_rows(set_names(lines_chunked_csvs, table_id_names), .id = "table")
#> # A tibble: 7 x 7
#>   table  Var1   Var2    Var3   Var4    Var5   Var6   
#>   <chr>  <chr>  <chr>   <chr>  <chr>   <chr>  <chr>  
#> 1 table1 198824 198824  198824 198824  198824 198824 
#> 2 table1 123    1234    1242   124     1241   1232   
#> 3 table2 x      x       x      x       x      x      
#> 4 table2 y      y       y      y       y      y      
#> 5 table2 z      z       z      z       z      z      
#> 6 table3 532523 25235   532523 25235   532523 25235  
#> 7 table3 25332  5325235 25332  5325235 25332  5325235

相关内容

  • 没有找到相关文章