为什么scikitslearn说F1分数定义不清FN大于0



我运行了一个python程序,该程序调用sklearn.metrics的方法来计算精度和F1分数。以下是没有预测样本时的输出:

/xxx/py2-scikit-learn/0.15.2-comp6/lib/python2.6/site-packages/sklearn/metr
ics/metrics.py:1771: UndefinedMetricWarning: Precision is ill-defined and being set to 0.0 due to no predicted samples.
  'precision', 'predicted', average, warn_for)
/xxx/py2-scikit-learn/0.15.2-comp6/lib/python2.6/site-packages/sklearn/metr
ics/metrics.py:1771: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples.
  'precision', 'predicted', average, warn_for)

当没有预测样本时,意味着TP+FP为0,因此

  • 精度(定义为TP/(TP+FP))是0/0
  • 如果FN不为零,则F1得分(定义为2TP/(2TP+FP+FN))为0

在我的情况下,sklearn.metrics也将精度返回为0.8,并将召回率返回为0。所以FN不是零。

但为什么scikilearn说F1定义不清呢?

Scikilearn对F1的定义是什么?

https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/metrics/classification.py

F1=2*(精度*召回)/(精度+召回)

精度=TP/(TP+FP),正如您刚才所说的,如果预测器根本不能预测正类,则精度为0。

查全率=TP/(TP+FN),如果预测器不能预测阳性类别——TP为0——查全率为0。

所以现在你正在除以0/0。

精度、召回率、F1分数准确度计算

- In a given image of Dogs and Cats
  * Total Dogs - 12  D = 12
  * Total Cats - 8   C = 8
- Computer program predicts
  * Dogs - 8  
    5 are actually Dogs   T.P = 5
    3 are not             F.P = 3    
  * Cats - 12
    6 are actually Cats   T.N = 6 
    6 are not             F.N = 6
- Calculation
  * Precision = T.P / (T.P + F.P) => 5 / (5 + 3)
  * Recall    = T.P / D           => 5 / 12
  * F1 = 2 * (Precision * Recall) / (Precision + Recall)
  * F1 = 0.5
  * Accuracy = T.P + T.N / P + N
  * Accuracy = 0.55

维基百科参考

相关内容

  • 没有找到相关文章

最新更新