从pandas dataframe创建术语密度矩阵时的内存使用量



我有一个数据框架,我从CSV文件中保存/读取,我想从中创建一个术语密度矩阵数据框。按照Herrfz的建议,我使用Sklearn的Counvectorizer。我将该代码包裹在函数

    from sklearn.feature_extraction.text import CountVectorizer
    countvec = CountVectorizer()
    from scipy.sparse import coo_matrix, csc_matrix, hstack
    def df2tdm(df,titleColumn,placementColumn):
        '''
        Takes in a DataFrame with at least two columns, and returns a dataframe with the term density matrix
        of the words appearing in the titleColumn
        Inputs: df, a DataFrame containing titleColumn, placementColumn among other columns
        Outputs: tdm_df, a DataFrame containing placementColumn and columns with all the words appearrig in df.titleColumn
        Credits: 
        https://stackoverflow.com/questions/22205845/efficient-way-to-create-term-density-matrix-from-pandas-dataframe
        '''
        tdm_df = pd.DataFrame(countvec.fit_transform(df[titleColumn]).toarray(), columns=countvec.get_feature_names())
        tdm_df = tdm_df.join(pd.DataFrame(df[placementColumn]))
        return tdm_df

返回TDM作为数据框架,例如:

    df = pd.DataFrame({'title':['Delicious boiled egg','Fried egg ', 'Potato salad', 'Split orange','Something else'], 'page':[1, 1, 2, 3, 4]})
    print df.head()
    tdm_df = df2tdm(df,'title','page')
    tdm_df.head()
       boiled  delicious  egg  else  fried  orange  potato  salad  something  
    0       1          1    1     0      0       0       0      0          0   
    1       0          0    1     0      1       0       0      0          0   
    2       0          0    0     0      0       0       1      1          0   
    3       0          0    0     0      0       1       0      0          0   
    4       0          0    0     1      0       0       0      0          1   
       split  page  
    0      0     1  
    1      0     1  
    2      0     2  
    3      1     3  
    4      0     4  

此实现遇到了不良内存缩放:当我使用占据190 kb保存为UTF8的数据帧时,该函数使用〜200 MB创建TDM DataFrame。当CSV文件为600 kb时,该函数使用700 MB,当CSV为3.8 MB时,功能会消耗我所有的内存和交换文件(8 GB)和崩溃。

我还使用稀疏矩阵和稀疏的数据框进行了实现(下图),但是内存使用范围几乎相同,只有它速度较慢

    def df2tdm_sparse(df,titleColumn,placementColumn):
        '''
        Takes in a DataFrame with at least two columns, and returns a dataframe with the term density matrix
        of the words appearing in the titleColumn. This implementation uses sparse DataFrames.
        Inputs: df, a DataFrame containing titleColumn, placementColumn among other columns
        Outputs: tdm_df, a DataFrame containing placementColumn and columns with all the words appearrig in df.titleColumn
        Credits: 
        https://stackoverflow.com/questions/22205845/efficient-way-to-create-term-density-matrix-from-pandas-dataframe
        https://stackoverflow.com/questions/17818783/populate-a-pandas-sparsedataframe-from-a-scipy-sparse-matrix
        https://stackoverflow.com/questions/6844998/is-there-an-efficient-way-of-concatenating-scipy-sparse-matrices
        '''
        pm = df[[placementColumn]].values
        tm = countvec.fit_transform(df[titleColumn])#.toarray()
        m = csc_matrix(hstack([pm,tm]))
        dfout = pd.SparseDataFrame([ pd.SparseSeries(m[i].toarray().ravel()) for i in np.arange(m.shape[0]) ])
        dfout.columns = [placementColumn]+countvec.get_feature_names()
        return dfout

关于如何改善内存使用量的任何建议?我想知道这是否与Scikit的内存问题有关,例如这里

我还认为问题可能在于从稀疏矩阵到稀疏数据框架的转换。

尝试此功能(或类似的内容)

 def SparseMatrixToSparseDF(xSparseMatrix):
     import numpy as np
     import pandas as pd
     def ElementsToNA(x):
          x[x==0] = NaN
     return x 
    xdf1 = 
      pd.SparseDataFrame([pd.SparseSeries(ElementsToNA(xSparseMatrix[i].toarray().ravel())) 
for i in np.arange(xSparseMatrix.shape[0]) ])
  return xdf1

您可以看到它使用函数密度

降低了大小
 df1.density

我希望它能有所帮助

相关内容

  • 没有找到相关文章

最新更新