如何使用Scikit Learn字典vectorizer从Python中的密集数据帧中获取编码的数据帧



我有一个数据帧,如下所示:

   user  item  affinity
0     1    13       0.1
1     2    11       0.4
2     3    14       0.9
3     4    12       1.0

由此我想创建一个编码数据集(用于fastFM(,如下所示:

  user1 user2 user4 user4 item11 item12 item13 item14 affinity
    1     0     0     0     0      0      1      0       0.1
    0     1     0     0     1      0      0      0       0.4
    0     0     1     0     0      0      0      1       0.9
    0     0     0     1     0      1      0      0       1.0

我需要sklearndictvectorizer吗?如果是,那么有没有办法将原始数据帧转换为字典,可以提供给dictvectorizer,进而为我提供如图所示的编码数据集?

您可以将

get_dummiesconcat一起使用 如果列 useritem 中的值是数字,则按 astype 强制转换为string

df = pd.DataFrame({'item': {0: 13, 1: 11, 2: 14, 3: 12}, 
                   'affinity': {0: 0.1, 1: 0.4, 2: 0.9, 3: 1.0},
                   'user': {0: 1, 1: 2, 2: 3, 3: 4}},
                    columns=['user','item','affinity'])
print df
   user  item  affinity
0     1    13       0.1
1     2    11       0.4
2     3    14       0.9
3     4    12       1.0
df1 = df.user.astype(str).str.get_dummies()
df1.columns = ['user' + str(x) for x in df1.columns]
print df1
   user1  user2  user3  user4
0      1      0      0      0
1      0      1      0      0
2      0      0      1      0
3      0      0      0      1
df2 = df.item.astype(str).str.get_dummies()
df2.columns = ['item' + str(x) for x in df2.columns]
print df2
   item11  item12  item13  item14
0       0       0       1       0
1       1       0       0       0
2       0       0       0       1
3       0       1       0       0
print pd.concat([df1,df2, df.affinity], axis=1)
   user1  user2  user3  user4  item11  item12  item13  item14  affinity
0      1      0      0      0       0       0       1       0       0.1
1      0      1      0      0       1       0       0       0       0.4
2      0      0      1      0       0       0       0       1       0.9
3      0      0      0      1       0       1       0       0       1.0

时间

len(df) = 4

In [49]: %timeit pd.concat([df1,df2, df.affinity], axis=1)
The slowest run took 4.91 times longer than the fastest. This could mean that an intermediate result is being cached 
1000 loops, best of 3: 690 µs per loop

len(df) = 40

df = pd.concat([df]*10).reset_index(drop=True)
In [51]: %timeit pd.concat([df1,df2, df.affinity], axis=1)
The slowest run took 5.56 times longer than the fastest. This could mean that an intermediate result is being cached 
1000 loops, best of 3: 719 µs per loop

len(df) = 400

df = pd.concat([df]*100).reset_index(drop=True)
In [43]: %timeit pd.concat([df1,df2, df.affinity], axis=1)
The slowest run took 4.55 times longer than the fastest. This could mean that an intermediate result is being cached 
1000 loops, best of 3: 748 µs per loop

len(df) = 4k

df = pd.concat([df]*1000).reset_index(drop=True)
In [41]: %timeit pd.concat([df1,df2, df.affinity], axis=1)
The slowest run took 4.67 times longer than the fastest. This could mean that an intermediate result is being cached 
1000 loops, best of 3: 761 µs per loop

len(df) = 40k

df = pd.concat([df]*10000).reset_index(drop=True)
%timeit pd.concat([df1,df2, df.affinity], axis=1)
1000 loops, best of 3: 1.83 ms per loop

len(df) = 400k

df = pd.concat([df]*100000).reset_index(drop=True)
%timeit pd.concat([df1,df2, df.affinity], axis=1)
100 loops, best of 3: 15.6 ms per loop

相关内容

  • 没有找到相关文章

最新更新