我想将由两个双精度值(x,y(表示的坐标对转换为希尔伯特值。我找到了以下实现(从此链接(:
/*****************************************************************
* hilbert_c2i
*
* Convert coordinates of a point on a Hilbert curve to its index.
* Inputs:
* nDims: Number of coordinates.
* nBits: Number of bits/coordinate.
* coord: Array of n nBits-bit coordinates.
* Outputs:
* index: Output index value. nDims*nBits bits.
* Assumptions:
* nDims*nBits <= (sizeof bitmask_t) * (bits_per_byte)
*/
bitmask_t
hilbert_c2i(unsigned nDims, unsigned nBits, bitmask_t const coord[])
{
if (nDims > 1)
{
unsigned const nDimsBits = nDims*nBits;
bitmask_t index;
unsigned d;
bitmask_t coords = 0;
for (d = nDims; d--; )
{
coords <<= nBits;
coords |= coord[d];
}
if (nBits > 1)
{
halfmask_t const ndOnes = ones(halfmask_t,nDims);
halfmask_t const nd1Ones= ndOnes >> 1; /* for adjust_rotation */
unsigned b = nDimsBits;
unsigned rotation = 0;
halfmask_t flipBit = 0;
bitmask_t const nthbits = ones(bitmask_t,nDimsBits) / ndOnes;
coords = bitTranspose(nDims, nBits, coords);
coords ^= coords >> nDims;
index = 0;
do
{
halfmask_t bits = (coords >> (b-=nDims)) & ndOnes;
bits = rotateRight(flipBit ^ bits, rotation, nDims);
index <<= nDims;
index |= bits;
flipBit = (halfmask_t)1 << rotation;
adjust_rotation(rotation,nDims,bits);
} while (b);
index ^= nthbits >> 1;
}
else
index = coords;
for (d = 1; d < nDimsBits; d *= 2)
index ^= index >> d;
return index;
}
else
return coord[0];
}
但是,这是用于整数值作为输入。如何适应我的双重价值观?
对于任何徘徊的人来说,维基百科页面有一种非常快速的方法来计算希尔伯特一维坐标。我已经在多个程序中使用了希尔伯特(我对Delaunay三角测量进行了研究,我们需要它来加快该过程(,我可以向您保证,这是可以找到的最好的程序。