布尔索引 numpy 数组与或逻辑运算符



我试图在 Numpy 数组上进行or布尔逻辑索引,但我找不到好方法。and operator &正常工作,如下所示:

X = np.arange(25).reshape(5, 5)
# We print X
print()
print('Original X = n', X)
print()
X[(X > 10) & (X < 17)] = -1
# We print X
print()
print('X = n', X)
print()
Original X = 
[[ 0  1  2  3  4]
[ 5  6  7  8  9]
[10 11 12 13 14]
[15 16 17 18 19]
[20 21 22 23 24]]
X = 
[[ 0  1  2  3  4]
[ 5  6  7  8  9]
[10 -1 -1 -1 -1]
[-1 -1 17 18 19]
[20 21 22 23 24]]

但是当我尝试:

X = np.arange(25).reshape(5, 5)
# We use Boolean indexing to assign the elements that are between 10 and 17 the value of -1
X[ (X < 10) or (X > 20) ] = 0 # No or condition possible!?!

我收到错误:

ValueError: The truth value of an array with more than one element is ambiguous. Use a.any() or a.all()

是否存在使用 or 逻辑运算符的好方法?

您可以通过以下方式将numpy.logical_or用于该任务:

import numpy as np
X = np.arange(25).reshape(5,5)
X[np.logical_or(X<10,X>20)] = 0
print(X)

输出:

[[ 0  0  0  0  0]
[ 0  0  0  0  0]
[10 11 12 13 14]
[15 16 17 18 19]
[20  0  0  0  0]]

还有numpy.logical_andnumpy.logical_xornumpy.logical_not

我会用np.logical_and和np.where的东西。 对于您给出的示例,我相信这会起作用。

X = np.arange(25).reshape(5, 5)
i = np.where(np.logical_and(X > 10 , X < 17))
X[i] = -1

这不是一个非常蟒蛇的答案。但很清楚

相关内容

  • 没有找到相关文章

最新更新