CUDA:将CPU上动态创建的函数指针数组复制到GPU内存



我想在CPU上动态创建一个函数指针列表(使用从main()调用的某种push_back()方法),并将其复制到GPU__constant____device__阵列,而无需使用静态__device__函数指针。我相信这个问题与我的问题有关;然而,我的目标是迭代创建__host__函数指针数组,然后将其复制到__constant__函数指针数组中,而不是在声明时初始化后者。

一个使用静态函数指针的工作代码示例(如这里或这里所示)是:

common.h:

#ifndef COMMON_H
#define COMMON_H
#include <stdio.h>
#include <iostream>
#define num_functions 3
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %dn", cudaGetErrorString(code),     file, line);
if (abort) exit(code);
}
}
// fptr_t: Pointer to void function that takes two integer lvalues
typedef void (*fptr_t)(int&, int&);
// some examples of void(int&, int&) functions...
__device__ void Add(int &a, int &b) {printf("Add... %i + %i = %in", a, b, a+b);}
__device__ void Subtract(int &a, int &b) {printf("Subtract... %i - %i = %in", a, b, a-b);}
__device__ void Multiply(int &a, int &b) {printf("Multiply... %i * %i = %in", a, b, a*b);}
// List of function pointers in device memory
__constant__ fptr_t constant_fList[num_functions];
// Kernel called from main(): choose the function to apply whose index is equal to thread ID
__global__ void kernel(int a, int b) {
fptr_t f;
if (threadIdx.x < num_functions) {
f = constant_fList[threadIdx.x];
f(a,b);
}
}
#endif

main.cu:

#include "common.h"
// Static device function pointers
__device__ fptr_t p_Add = Add;
__device__ fptr_t p_Sub = Subtract;
__device__ fptr_t p_Mul = Multiply;
// Load function list to constant memory
void loadList_staticpointers() {
fptr_t h_fList[num_functions];
gpuErrchk( cudaMemcpyFromSymbol(&h_fList[0], p_Add, sizeof(fptr_t)) );
gpuErrchk( cudaMemcpyFromSymbol(&h_fList[1], p_Sub, sizeof(fptr_t)) );
gpuErrchk( cudaMemcpyFromSymbol(&h_fList[2], p_Mul, sizeof(fptr_t)) );
gpuErrchk( cudaMemcpyToSymbol(constant_fList, h_fList, num_functions * sizeof(fptr_t)) );
}
int main() {
loadList_staticpointers();
int a = 12, b = 15;
kernel<<<1,3>>>(a, b);
gpuErrchk(cudaGetLastError());
gpuErrchk(cudaDeviceSynchronize());
return 0;
}

规格:GeForce GTX 670,为-arch=sm_30、CUDA 6.5、Ubuntu 14.04 编译

我希望避免使用静态设备函数指针,因为添加每个函数都需要在用户端进行代码维护-声明新的静态指针(如p_Addp_Mul)、操作void loadList_functionpointers()等。为了明确起见,我正在尝试以下(崩溃)代码:

main_wrong.cu:

#include "common.h"
#include <vector>
// Global variable: list of function pointers in host memory
std::vector<fptr_t> vec_fList;
// Add function to functions list
void addFunc(fptr_t f) {vec_fList.push_back(f);}
// Upload the functions in the std::vector<fptr_t> to GPU memory
// Copies CPU-side pointers to constant_fList, therefore crashes on kernel call 
void UploadVector() {
fptr_t* h_vpointer = vec_fList.data();
gpuErrchk( cudaMemcpyToSymbol(constant_fList, h_vpointer, vec_fList.size() * sizeof(fptr_t)) );
}
int main() {
addFunc(Add);
addFunc(Subtract);
addFunc(Multiply);
int a = 12, b = 15;
UploadVector();
kernel<<<1,3>>>(a, b); // Wrong to call a host-side function pointer from a kernel
gpuErrchk(cudaGetLastError());
gpuErrchk(cudaDeviceSynchronize());
return 0;
}

我的理解是,指向主机地址的函数指针被复制到GPU,内核不可用,当调用函数f(a,b)时,内核需要指向GPU地址的指针。用设备端指针填充主机端数组对我来说适用于原始数据(请参阅此问题),但对函数指针无效。使用统一内存的琐碎尝试也失败了。。。到目前为止,我只找到了静态的设备端指针。没有其他方法可以将动态创建的CPU函数指针阵列复制到GPU上吗?

如果您可以使用C++11(自CUDA 7以来支持),您可以使用以下功能自动生成函数表:

template <fptr_t... Functions>
__global__ void kernel(int a, int b)
{
constexpr auto num_f = sizeof...(Functions);
constexpr fptr_t table[] = { Functions... };
if (threadIdx.x < num_f)
{
fptr_t f = table[threadIdx.x];
f(a,b);
}
}

然后使用调用这个内核

kernel<Add, Subtract, Multiply><<<1,3>>>(a, b);

m.s答案的启发,我选择将函数指针作为模板参数传递——这实际上是解决我的问题的关键——并发现在没有静态函数指针帮助的情况下,从main()函数迭代填充函数指针dev_fList__device__数组确实是可能的,加上C++11的兼容性甚至都不需要!

以下是全局内存中__device__阵列的工作示例。我还没有尝试过它的常量内存对应项,但一旦令人满意地创建了全局内存阵列,我的猜测是cudaMemcpyToSymbol(..., cudaMemcpyDeviceToDevice)应该可以做到这一点。

内核kernel()为函数指针dev_f创建GPU地址,并复制作为模板参数传递的函数f。由于这是一个来自CPU的迭代过程,因此该内核中只涉及一个线程(线程0),该内核使用配置<<<1,1>>>启动。静态变量count_f负责dev_fList中的索引。

common.h:

#ifndef COMMON_H
#define COMMON_H
#include <stdio.h>
#include <iostream>
#define num_functions 3
#define gpuErrchk(ans) { gpuAssert((ans), __FILE__, __LINE__); }
inline void gpuAssert(cudaError_t code, const char *file, int line, bool abort=true)
{
if (code != cudaSuccess)
{
fprintf(stderr,"GPUassert: %s %s %dn", cudaGetErrorString(code), file, line);
if (abort) exit(code);
}
}
// fptr_t: Pointer to void function that takes two integer lvalues
typedef void (*fptr_t)(int&, int&);
// some examples of void(int&, int&) functions...
__device__ void Add(int &a, int &b) {printf("Add... %i + %i = %in", a, b, a+b);}
__device__ void Subtract(int &a, int &b) {printf("Subtract... %i - %i = %in", a, b, a-b);}
__device__ void Multiply(int &a, int &b) {printf("Multiply... %i * %i = %in", a, b, a*b);}
// List of function pointers in device memory
// Note that, in my example, it resides in global memory space, not constant memory
__device__ fptr_t dev_fList[num_functions];
#endif

main.cu:

#include "common.h"
// Index in dev_fList[] == number of times addFunc<>() was launched
static int count_f = 0;
// Kernel that copies function f to the GPU
template<fptr_t f>
__global__ void kernel(int a, int b, int idx) {
fptr_t dev_f = f; // Create device function pointer
dev_fList[idx] = dev_f; // Populate the GPU array of function pointers
dev_fList[idx](a,b); // Make sure that the array was populated correctly
}
// Add function to functions list
template<fptr_t f>
void addFunc(const int &a, const int &b) {
if (count_f >= num_functions) {
std::cout << "Error: not enough memory statically allocated on device!n";
exit(EXIT_FAILURE);
}
kernel<f><<<1,1>>>(a,b,count_f);
gpuErrchk(cudaGetLastError());
gpuErrchk(cudaDeviceSynchronize());
count_f++;
}
int main() {
int a = 12, b = 15;
addFunc<Add>(a,b);
addFunc<Subtract>(a,b);
addFunc<Multiply>(a,b);
return 0;
}

编辑:添加到常量内存的函数指针数组的副本

值得一提的是,以下是如何将我们的dev_fList数组复制到常量内存:

常见.h:

__constant__ fptr_t cst_fList[num_functions];
__global__ void cst_test(int a, int b, int idx) {
if (threadIdx.x < idx) cst_fList[threadIdx.x](a,b);
}

在main.cumain()功能中,添加所有所需功能后:

fptr_t *temp;
gpuErrchk( cudaMemcpyFromSymbol((void**)&temp, dev_fList[0], count_f * sizeof(fptr_t)) );
gpuErrchk( cudaMemcpyToSymbol(cst_fList[0], &temp, count_f * sizeof(fptr_t)) );
cst_test<<<1,count_f>>>(a,b, count_f);
gpuErrchk(cudaGetLastError());
gpuErrchk(cudaDeviceSynchronize());

据我所知,内存通过temp传输到主机,然后再传输回设备,这可能看起来很难看;欢迎更优雅的建议。

不可能使用动态创建的CUDA设备函数指针(至少在没有崩溃或UB的情况下)。基于模板的解决方案在编译时工作(不是动态的)。CUDA设备函数指针在全局空间中需要设备符号。这意味着对于每个函数,都必须声明一个设备函数指针。这也意味着不能使用普通的C函数指针作为引用,例如在运行时设置的指针。在理解上,使用CUDA设备函数指针是有问题的。基于模板的方法看起来用户友好,但根据定义是不动态的。

带有函数指针的结构示例:

此示例显示了一个具有一些函数指针的结构。在普通C++代码中,您可以在程序运行时(动态)设置和更改设备函数指针。对于CUDA,以下示例是不可能的,因为结构中的函数指针不是有效的设备符号。这意味着它们不能与"cudaMemcpyFromSymbol"一起使用。为了避免这种情况,必须创建原始函数(函数指针的目标)或全局cuda设备函数指针。两者都不是动态的。

这是动态分配:

typedef float (*pDistanceFu) (float, float);
typedef float (*pDecayFu)    (float, float, float);
// In C++ you can set and reset the function pointer during run time whenever you want ..
struct DistFunction {
/*__host__ __device__*/ pDistanceFu distance; // uncomment for NVCC ..
/*__host__ __device__*/ pDecayFu rad_decay;
/*__host__ __device__*/ pDecayFu lrate_decay;
};
// you can do what you want ..
DistFunction foo, bar;
foo.distance = bar.distance;
// ..

CUDA应该是这样的,但它会失败,因为没有有效的设备符号:(

pDistanceFu hDistance; 
pDecayFu hRadDay; 
pDecayFu hLRateDecay; 
void DeviceAssign(DistFunction &dist) {      
cudaMemcpyFromSymbol(&hDistance, dist.distance, sizeof(pDistanceFu) );
cudaMemcpyFromSymbol(&hRadDay, dist.rad_decay, sizeof(pDecayFu) );
cudaMemcpyFromSymbol(&hLRateDecay, dist.lrate_decay, sizeof(pDecayFu) );
dist.distance = hDistance;
dist.rad_decay = hRadDay;
dist.lrate_decay = hLRateDecay;
} 

这是经典的方法,但您注意到,它不再是动态的,因为设备符号必须引用函数引用,而不是可能在运行时更改的指针。。

// .. and this would work
#ifdef __CUDACC__
__host__ __device__
#endif
inline float fcn_rad_decay (float sigma0, float T, float lambda) {
return std::floor(sigma0*exp(-T/lambda) + 0.5f);
}
__device__ pDistanceFu pFoo= fcn_rad_decay; // pointer must target a reference, no host pointer possible 
void DeviceAssign2(DistFunction &dist) {      
cudaMemcpyFromSymbol(&hLRateDecay, &fcn_rad_decay, sizeof(pDecayFu) );
// the same:
// cudaMemcpyFromSymbol(&hLRateDecay, pFoo, sizeof(pDecayFu) );
// ..
dist.lrate_decay = hLRateDecay;
// ..
} 

最新更新