将Spark RDD作为文本文件写入S3桶



我试图将Spark RDD保存为gzip文本文件(或几个文本文件)到S3桶。S3桶挂载到dbfs上。我正在尝试使用以下命令保存文件:

rddDataset.saveAsTextFile("/mnt/mymount/myfolder/")

但是当尝试这个时,我一直得到错误:

org.apache.spark.SparkException: Job aborted due to stage failure: Task 32 in stage 18.0 failed 4 times, most recent failure: Lost task 32.3 in stage 18.0 (TID 279, ip-10-81-194-225.ec2.internal): java.lang.NullPointerException

但是,我确实看到一些文件被写入S3 bucket。我也尝试过使用rddDataset.repartition(1).saveAsTextFile("/mnt/mymount/myfolder/"),在这里建议,但这以同样的错误结束。

这似乎是类似于这个问题,所以也许错误是由于在我的RDD空值?但是当我尝试val newRDD = rddDataset.map(line => line).filter(x => x!= null).filter(x => x!=" ").filter(x => x!="")并尝试保存此RDD时,我得到相同的错误。

另外,rddDataset.count()抛出一个类似的错误。我正在从一个数据框创建rddDataset,它可以很好地显示它的所有行。但是,如果将原始数据帧转换为RDD,则可以重现java.lang.NullPointerException:

val testRDD = df.rdd
testRDD.count()
> org.apache.spark.SparkException: Job aborted due to stage failure: Task 32 in stage 85.0 failed 4 times, most recent failure: Lost task 32.3 in stage 85.0 (TID 1668, ip-10-81-194-241.ec2.internal): java.lang.NullPointerException

我在下面提供了一个堆栈跟踪:

Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1837)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1850)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1927)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply$mcV$sp(PairRDDFunctions.scala:1209)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply(PairRDDFunctions.scala:1154)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopDataset$1.apply(PairRDDFunctions.scala:1154)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopDataset(PairRDDFunctions.scala:1154)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$4.apply$mcV$sp(PairRDDFunctions.scala:1060)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$4.apply(PairRDDFunctions.scala:1026)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$4.apply(PairRDDFunctions.scala:1026)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:1026)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$1.apply$mcV$sp(PairRDDFunctions.scala:952)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$1.apply(PairRDDFunctions.scala:952)
at org.apache.spark.rdd.PairRDDFunctions$$anonfun$saveAsHadoopFile$1.apply(PairRDDFunctions.scala:952)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.PairRDDFunctions.saveAsHadoopFile(PairRDDFunctions.scala:951)
at org.apache.spark.rdd.RDD$$anonfun$saveAsTextFile$1.apply$mcV$sp(RDD.scala:1457)
at org.apache.spark.rdd.RDD$$anonfun$saveAsTextFile$1.apply(RDD.scala:1436)
at org.apache.spark.rdd.RDD$$anonfun$saveAsTextFile$1.apply(RDD.scala:1436)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.saveAsTextFile(RDD.scala:1436)
Caused by: java.lang.NullPointerException

另外,当我在运行rddDataset.repartition(200).saveAsTextFile(/mnt/mymount/myfolder)后打开舞台的信息选项卡时,我可以找到错误详细信息:

java.lang.NullPointerException
at linef9b86491b9da46b9858e22af0cc8257227.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$1.apply(<console>:48)
at linef9b86491b9da46b9858e22af0cc8257227.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$1.apply(<console>:48)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.evalExpr35$(Unknown Source)
at org.apache.spark.sql.catalyst.expressions.GeneratedClass$SpecificUnsafeProjection.apply(Unknown Source)
at org.apache.spark.sql.execution.Project$$anonfun$1$$anonfun$apply$1.apply(basicOperators.scala:51)
at org.apache.spark.sql.execution.Project$$anonfun$1$$anonfun$apply$1.apply(basicOperators.scala:49)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:149)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:79)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:46)
at org.apache.spark.scheduler.Task.run(Task.scala:96)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:235)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)

在预处理数据时,我没有正确处理其中一个udf中的空值。具体地说,我必须从

更改其中一个udf
val converter = (arg: String) => {
  arg.split("").mkString("_").replace(":","_") 
}

val converter = (arg: String) => {
  if (arg == null || arg== "") "" else arg.split("").mkString("_").replace(":","_") 
}

从那以后一切似乎都正常了。

相关内容

  • 没有找到相关文章

最新更新