我想知道是否有人可以快速浏览以下代码片段,并指出我的方向,以发现我在计算模型中每个类的样本概率时的误解以及我的相关代码错误。我尝试手动计算 sklearn 函数 lm.predict_proba(X( 提供的结果,遗憾的是结果不同,所以我犯了一个错误。
我认为该错误将位于以下代码演练的"d"部分。也许在数学中,但我看不出为什么。
a( 创建和训练逻辑回归模型(工作正常(
lm = LogisticRegression(random_state=413, multi_class='multinomial', solver='newton-cg')
lm.fit(X, train_labels)
b( 节省系数和偏置 ( 工作正常 (
W = lm.coef_
b = lm.intercept_
c( 使用 lm.predict_proba(X( ( 工作正常(
def reshape_single_element(x,num):
singleElement = x[num]
nx,ny = singleElement.shape
return singleElement.reshape((1,nx*ny))
select_image_number = 6
X_select_image_data=reshape_single_element(train_dataset,select_image_number)
Y_probabilities = lm.predict_proba(X_select_image_data)
Y_pandas_probabilities = pd.Series(Y_probabilities[0], index=['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'])
print"estimate probabilities for each class: n" ,Y_pandas_probabilities , "n"
print"all probabilities by lm.predict_proba(..) sum up to ", np.sum(Y_probabilities) , "n"
输出为:
estimate probabilities for each class:
a 0.595426
b 0.019244
c 0.001343
d 0.004033
e 0.017185
f 0.004193
g 0.160380
h 0.158245
i 0.003093
j 0.036860
dtype: float64
all probabilities by lm.predict_proba(..) sum up to 1.0
d( 手动执行lm.predict_proba完成的计算(没有错误/警告,但结果不一样(
manual_calculated_probabilities = []
for select_class_k in range(0,10): #a=0. b=1, c=3 ...
z_for_class_k = (np.sum(W[select_class_k] *X_select_image_data) + b[select_class_k] )
p_for_class_k = 1/ (1 + math.exp(-z_for_class_k))
manual_calculated_probabilities.append(p_for_class_k)
print "formula: ", manual_calculated_probabilities , "n"
def softmax(x):
"""Compute softmax values for each sets of scores in x."""
e = np.exp(x)
dist = e / np.sum(np.exp(x),axis=0)
return dist
abc = softmax(manual_calculated_probabilities)
print "softmax:" , abc
输出为:
formula: [0.9667598370531315, 0.48453459121301334, 0.06154496922245115, 0.16456194859398865, 0.45634781280053394, 0.16999340794727547, 0.8867996361191054, 0.8854473986336552, 0.13124464656251109, 0.642913996162282]
softmax: [ 0.15329642 0.09464644 0.0620015 0.0687293 0.0920159 0.069103610.14151607 0.14132483 0.06647715 0.11088877]
使用Softmax是因为github上的评论 logistic.py
For a multi_class problem, if multi_class is set to be "multinomial" the softmax function is used to find the predicted probability of each class.
注意:
print "shape of X: " , X_select_image_data.shape
print "shape of W: " , W.shape
print "shape of b: " , b.shape
shape of X: (1, 784)
shape of W: (10, 784)
shape of b: (10,)
我在这里发现了一个非常相似的问题,但遗憾的是我无法将其适应我的代码,因此预测相同。我尝试了许多不同的组合来计算变量"z_for_class_k"和"p_for_class_k",但遗憾的是,没有成功重现"predict_proba(X("的预测值。
我认为问题出在
p_for_class_k = 1/(1 + math.exp(-z_for_class_k((
1 / (1 + exp(-logit))
是一种简化,仅适用于二进制问题。
在简化之前,真正的方程如下所示:
p_for_classA =
exp(logit_classA) /
[1 + exp(logit_classA) + exp(logit_classB) ... + exp(logit_classC)]
换句话说,在计算特定类的概率时,您必须将其他类的所有权重和偏差也合并到公式中。
我没有数据来测试这一点,但希望这能为你指明正确的方向。
更改
p_for_class_k = 1/ (1 + math.exp(-z_for_class_k))
manual_calculated_probabilities.append(p_for_class_k)
自
manual_calculated_probabilities.append(z_for_class_k)
又名 SoftMax 的输入在您的符号中是"Z"而不是"P"。 多项式逻辑
我能够通过执行以下操作来复制该方法lr.predict_proba
:
>>> sigmoid = lambda x: 1/(1+np.exp(-x))
>>> sigmoid(lr.intercept_+np.sum(lr.coef_*X.values, axis=1))
假设 X 是一个 numpy 数组,lr
是来自 sklearn 的对象。