TFIDF 矢量化器给出错误



我正在尝试使用TFIDF和SVM对某些文件进行文本分类。功能一次选择3个单词。我的数据文件已经是这样的格式:天使之眼有,每个,单独。没有停止词,也不能做旅鼠或词干。我希望将功能选为:天使之眼有...我编写的代码如下:

import os
import sys
import numpy
from sklearn.svm import LinearSVC
from sklearn.metrics import confusion_matrix
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn import metrics
from sklearn.datasets import load_files
from sklearn.cross_validation import train_test_split
dt=load_files('C:/test4',load_content=True)
d= len(dt)
print dt.target_names
X, y = dt.data, dt.target
print y
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
print y_train
vectorizer = CountVectorizer()
z= vectorizer.fit_transform(X_train)
tfidf_vect= TfidfVectorizer(lowercase= True, tokenizer=',', max_df=1.0, min_df=1, max_features=None, norm=u'l2', use_idf=True, smooth_idf=True, sublinear_tf=False)

X_train_tfidf = tfidf_vect.fit_transform(z)
print tfidf_vect.get_feature_names()
svm_classifier = LinearSVC().fit(X_train_tfidf, y_train)

不幸的是,我在" X_train_tfidf = tfidf_vect.fit_transform(z)" 处收到错误: 属性错误: 未找到下层 。
如果我修改代码要做

tfidf_vect= TfidfVectorizer( tokenizer=',', use_idf=True, smooth_idf=True, sublinear_tf=False)
print "okay2"
#X_train_tfidf = tfidf_transformer.fit_transform(z)
X_train_tfidf = tfidf_vect.fit_transform(X_train)
print X_train_tfidf.getfeature_names()

我收到错误:类型错误:"str"对象不可调用可以请有人告诉我我哪里出错了

词器参数的输入是可调用的。尝试定义一个函数,该函数将适当地标记数据。如果它是逗号分隔的,则:

def tokens(x):
return x.split(',')

应该工作。

from sklearn.feature_extraction.text import TfidfVectorizer
tfidf_vect= TfidfVectorizer( tokenizer=tokens ,use_idf=True, smooth_idf=True, sublinear_tf=False)

创建由 , 分隔的随机字符串

 a=['cat on the,angel eyes has,blue red angel,one two blue,blue whales eat,hot tin roof']
tfidf_vect.fit_transform(a)
tfidf_vect.get_feature_names()

返回

Out[73]:
[u'angel eyes has',
 u'blue red angel',
 u'blue whales eat',
 u'cat on the',
 u'hot tin roof',
 u'one two blue']

相关内容

  • 没有找到相关文章