这类似于pyspark:带有嵌套结构到字符串
但是,接受的答案对我的案件不起作用,所以在这里询问
|-- Col1: string (nullable = true)
|-- Col2: array (nullable = true)
|-- element: struct (containsNull = true)
|-- Col2Sub: string (nullable = true)
样本JSON
{"Col1":"abc123","Col2":[{"Col2Sub":"foo"},{"Col2Sub":"bar"}]}
这给出了单列的结果
import pyspark.sql.functions as F
df.selectExpr("EXPLODE(Col2) AS structCol").select(F.expr("concat_ws(',', structCol.*)").alias("Col2_concated")).show()
+----------------+
| Col2_concated |
+----------------+
|foo,bar |
+----------------+
但是,如何获得结果或数据框架
+-------+---------------+
|Col1 | Col2_concated |
+-------+---------------+
|abc123 |foo,bar |
+-------+---------------+
编辑:该解决方案给出了错误的结果
df.selectExpr("Col1","EXPLODE(Col2) AS structCol").select("Col1", F.expr("concat_ws(',', structCol.*)").alias("Col2_concated")).show()
+-------+---------------+
|Col1 | Col2_concated |
+-------+---------------+
|abc123 |foo |
+-------+---------------+
|abc123 |bar |
+-------+---------------+
只需避免爆炸,就已经在那里。您需要的只是Concat_ws函数。此函数将多个字符串列与给定的分离器连接在一起。请参阅下面的示例:
from pyspark.sql import functions as F
j = '{"Col1":"abc123","Col2":[{"Col2Sub":"foo"},{"Col2Sub":"bar"}]}'
df = spark.read.json(sc.parallelize([j]))
#printSchema tells us the column names we can use with concat_ws
df.printSchema()
输出:
root
|-- Col1: string (nullable = true)
|-- Col2: array (nullable = true)
| |-- element: struct (containsNull = true)
| | |-- Col2Sub: string (nullable = true)
列Col2是Col2Sub的一个数组,我们可以使用此列名来获得所需的结果:
bla = df.withColumn('Col2', F.concat_ws(',', df.Col2.Col2Sub))
bla.show()
+------+-------+
| Col1| Col2|
+------+-------+
|abc123|foo,bar|
+------+-------+