我正在使用Spark SQL(我提到它在Spark中,以防影响SQL语法-我还不够熟悉,无法确定),我正在尝试重新构建一个表。我有一种在本地工作的方法,但当我试图在AWS EC2实例上运行相同的命令时,我会收到一个错误报告,称我有一个"未解决的操作员"
基本上我有这样的数据:
userId someString varA
1 "example1" [0,2,5]
2 "example2" [1,20,5]
我在varA上的sqlContext中使用了一个"爆炸"命令。当我在本地运行这个程序时,它会正确返回,但在AWS上会失败。
我可以用以下命令复制它:
val data = List(
("1", "example1", Array(0,2,5)), ("2", "example2", Array(1,20,5)))
val distData = sc.parallelize(data)
val distTable = distData.toDF("userId", "someString", "varA")
distTable.registerTempTable("distTable_tmp")
val temp1 = sqlContext.sql("select userId, someString, varA from distTable_tmp")
val temp2 = sqlContext.sql(
"select userId, someString, explode(varA) as varA from distTable_tmp")
在本地,temp1.show()和temp2.show()返回我所期望的,即:
scala> temp1.show()
+------+----------+----------+
|userId|someString| varA|
+------+----------+----------+
| 1| example1| [0, 2, 5]|
| 2| example2|[1, 20, 5]|
+------+----------+----------+
scala> temp2.show()
+------+----------+----+
|userId|someString|varA|
+------+----------+----+
| 1| example1| 0|
| 1| example1| 2|
| 1| example1| 5|
| 2| example2| 1|
| 2| example2| 20|
| 2| example2| 5|
+------+----------+----+
但在AWS上,temp1-sqlContext命令运行良好,但temp2失败,并显示消息:
scala> val temp2 = sqlContext.sql("select userId, someString, explode(varA) as varA from distTable_tmp")
15/11/05 22:46:49 INFO parse.ParseDriver: Parsing command: select userId, someString, explode(varA) as varA from distTable_tmp
15/11/05 22:46:49 INFO parse.ParseDriver: Parse Completed
org.apache.spark.sql.AnalysisException: unresolved operator 'Project [userId#3,someString#4,HiveGenericUdtf#org.apache.hadoop.hive.ql.udf.generic.GenericUDTFExplode(varA#5) AS varA#6];
...
非常感谢。
问题的根源是您在EC2上使用的Spark版本。Spark 1.4中引入了explode
函数,因此无法在1.3.1上工作。可以像这样使用RDD
和flatMap
:
import org.apache.spark.sql.Row
import org.apache.spark.rdd.RDD
import org.apache.spark.sql.types.{StructType, StructField, IntegerType}
val rows: RDD[Row] = distTable.rdd.flatMap(
row => row.getAs[Seq[Int]](2).map(v => Row.fromSeq(row.toSeq :+ v)))
val newSchema = StructType(
distTable.schema.fields :+ StructField("varA_exploded", IntegerType, true))
sqlContext.createDataFrame(rows, newSchema).show
// userId someString varA varA_exploded
// 1 example1 ArrayBuffer(0, 2, 5) 0
// 1 example1 ArrayBuffer(0, 2, 5) 2
// 1 example1 ArrayBuffer(0, 2, 5) 5
// 2 example2 ArrayBuffer(1, 20... 1
// 2 example2 ArrayBuffer(1, 20... 20
// 2 example2 ArrayBuffer(1, 20... 5
但它怀疑这是否值得大惊小怪。