Python scikits - Buffer的维数错误(预期为1,实际为2)



我正在尝试这个代码片段。我正在使用科学工具。学习0.8.1

from scikits.learn import linear_model
import numpy as np
num_rows = 10000
X = np.zeros([num_rows,2])
y = np.zeros([num_rows,1])
# assume here I have filled in X and y appropriately with 0s and 1s from the dataset
clf = linear_model.LogisticRegression()
clf.fit(X, y)

I am get this ->

/usr/local/lib/python2.6/dist-packages/scikits/learn/svm/liblinear.so in scikits.learn.svm.liblinear.train_wrap (scikits/learn/svm/liblinear.c:992)()
ValueError: Buffer has wrong number of dimensions (expected 1, got 2)

这里出了什么问题?

解决。错误是由于:

y = np.zeros([num_rows,1])

应该是:

y = np.zeros([num_rows])

相关内容

  • 没有找到相关文章

最新更新