Bazel 构建 TensorFlow 服务与本地下载的 TensorFlow 一起使用



TensorFlow 服务构建 denpend on large tensorflow; 但我已经成功地构建了 TensorFlow。 所以我想使用它。 我做这些事情: 我更改了张量流服务工作区(组织:https://github.com/tensorflow/serving/blob/master/WORKSPACE(

workspace(name = "tf_serving")
# To update TensorFlow to a new revision.
# 1. Update the 'git_commit' args below to include the new git hash.
# 2. Get the sha256 hash of the archive with a command such as...
#    curl -L https://github.com/tensorflow/tensorflow/archive/<git hash>.tar.gz | sha256sum
#    and update the 'sha256' arg with the result.
# 3. Request the new archive to be mirrored on mirror.bazel.build for more
#    reliable downloads.
#load("//tensorflow_serving:repo.bzl", "tensorflow_http_archive")
#tensorflow_http_archive(
#    name = "org_tensorflow",
#    sha256 = "0f4b8375de30c54cc3233bc40e04742dab0ffe007acf8391651c6adb62be89f8",
#    git_commit = "2ea398b12ed18b6c51e09f363021c6aa306c5179",
#)
local_repository(
name = "org_tensorflow",
path = "/vagrant/tf/tensorflow/",
)

# TensorFlow depends on "io_bazel_rules_closure" so we need this here.
# Needs to be kept in sync with the same target in TensorFlow's WORKSPACE file.
http_archive(
name = "io_bazel_rules_closure",
sha256 = "a38539c5b5c358548e75b44141b4ab637bba7c4dc02b46b1f62a96d6433f56ae",
strip_prefix = "rules_closure-dbb96841cc0a5fb2664c37822803b06dab20c7d1",
urls = [
"https://mirror.bazel.build/github.com/bazelbuild/rules_closure/archive/dbb96841cc0a5fb2664c37822803b06dab20c7d1.tar.gz",
"https://github.com/bazelbuild/rules_closure/archive/dbb96841cc0a5fb2664c37822803b06dab20c7d1.tar.gz",  # 2018-04-13
],
)
# Please add all new TensorFlow Serving dependencies in workspace.bzl.
load("//tensorflow_serving:workspace.bzl", "tf_serving_workspace")
tf_serving_workspace()
# Specify the minimum required bazel version.
load("@org_tensorflow//tensorflow:version_check.bzl", "check_bazel_version_at_least")
check_bazel_version_at_least("0.15.0")

但是我使用此命令错误进行构建:

[root@localhost serving]# tools/bazel_in_docker.sh bazel build --config=nativeopt tensorflow_serving/...
== Pulling docker image: tensorflow/serving:nightly-devel
Trying to pull repository docker.io/tensorflow/serving ...
nightly-devel: Pulling from docker.io/tensorflow/serving
Digest: sha256:f500ae4ab367cbabfd474487175bb357d73c01466a80c699db90ba3f0ba7b5a8
Status: Image is up to date for docker.io/tensorflow/serving:nightly-devel
== Running cmd: sh -c 'cd /root/serving; TEST_TMPDIR=.cache bazel build --config=nativeopt tensorflow_serving/...'
usermod: no changes
$TEST_TMPDIR defined: output root default is '/root/serving/.cache' and max_idle_secs default is '15'.
Starting local Bazel server and connecting to it...
.............
ERROR: error loading package '': Encountered error while reading extension file 'tensorflow/workspace.bzl': no such package '@org_tensorflow//tensorflow': /root/serving/.cache/_bazel_root/01a289b7faaf5ec651fb0e4e35f862a1/external/org_tensorflow must be an existing directory
ERROR: error loading package '': Encountered error while reading extension file 'tensorflow/workspace.bzl': no such package '@org_tensorflow//tensorflow': /root/serving/.cache/_bazel_root/01a289b7faaf5ec651fb0e4e35f862a1/external/org_tensorflow must be an existing directory
INFO: Elapsed time: 0.460s
INFO: 0 processes.
FAILED: Build did NOT complete successfully (0 packages loaded)

BIIL 成功使用本地张量流服务了什么 ID? 谢谢!

你应该提高docker build ressource CPU和内存。我在笔记本电脑上对 docker 进行了 4 vcpu 和 4 Gig ram 升级,但在构建张量流服务图像时,您需要使用此选项将 Bazzel C 编译器限制为 2048 Meg 内存

https://www.tensorflow.org/serving/docker

docker build --pull --build-arg TF_SERVING_BUILD_OPTIONS="--copt=-mavx 
--cxxopt=-D_GLIBCXX_USE_CXX11_ABI=0 --local_resources 2048,.5,1.0" -t 
$USER/tensorflow-serving-devel -f Dockerfile.devel .

还需要将 Bazel 的版本升级到 20 才能构建工作。 在您的 docker 文件中

设置 Bazel augmenter 版本 20 倒编译器张量流


Set up Bazel augmenter version 20 pour compiler tensorflow
# Need >= 0.15.0 so bazel compiles work with docker bind mounts.
ENV BAZEL_VERSION 0.20.0
WORKDIR /
RUN mkdir /bazel && 
cd /bazel && 
curl -H "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36" -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh && 
curl -H "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36" -fSsL -o /bazel/LICENSE.txt https://raw.githubusercontent.com/bazelbuild/bazel/master/LICENSE && 
chmod +x bazel-*.sh && 
./bazel-$BAZEL_VERSION-installer-linux-x86_64.sh && 
cd / && 
rm -f /bazel/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh

这里是名为dockerbuild的整个docker文件.txt和docker build命令

docker build --pull --build-arg TF_SERVING_BUILD_OPTIONS="--copt=-mavx --cxxopt=-D_GLIBCXX_USE_CXX11_ABI=0 --local_resources 2048,.5,1.0" -f dockerbuild.txt .

# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
FROM ubuntu:18.04 as base_build
ARG TF_SERVING_VERSION_GIT_BRANCH=master
ARG TF_SERVING_VERSION_GIT_COMMIT=head
LABEL maintainer=gvasudevan@google.com
LABEL tensorflow_serving_github_branchtag=${TF_SERVING_VERSION_GIT_BRANCH}
LABEL tensorflow_serving_github_commit=${TF_SERVING_VERSION_GIT_COMMIT}
RUN apt-get update && apt-get install -y --no-install-recommends 
automake 
build-essential 
ca-certificates 
curl 
git 
libcurl3-dev 
libfreetype6-dev 
libpng-dev 
libtool 
libzmq3-dev 
mlocate 
openjdk-8-jdk
openjdk-8-jre-headless 
pkg-config 
python-dev 
software-properties-common 
swig 
unzip 
wget 
zip 
zlib1g-dev 
&& 
apt-get clean && 
rm -rf /var/lib/apt/lists/*
RUN curl -fSsL -O https://bootstrap.pypa.io/get-pip.py && 
python get-pip.py && 
rm get-pip.py
RUN pip --no-cache-dir install 
grpcio 
	h5py 
keras_applications 
keras_preprocessing 
mock 
numpy 
	six	  
	Pillow  
	matplotlib 
	opencv-python  
	pandas  
requests 
# Set up Bazel augmenter version 20 pour compiler tensorflow
# Need >= 0.15.0 so bazel compiles work with docker bind mounts.
ENV BAZEL_VERSION 0.20.0
WORKDIR /
RUN mkdir /bazel && 
cd /bazel && 
curl -H "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36" -fSsL -O https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh && 
curl -H "User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/57.0.2987.133 Safari/537.36" -fSsL -o /bazel/LICENSE.txt https://raw.githubusercontent.com/bazelbuild/bazel/master/LICENSE && 
chmod +x bazel-*.sh && 
./bazel-$BAZEL_VERSION-installer-linux-x86_64.sh && 
cd / && 
rm -f /bazel/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh
# Download TF Serving sources (optionally at specific commit).
WORKDIR /tensorflow-serving
RUN git clone --branch=${TF_SERVING_VERSION_GIT_BRANCH} https://github.com/tensorflow/serving . && 
git remote add upstream https://github.com/tensorflow/serving.git && 
if [ "${TF_SERVING_VERSION_GIT_COMMIT}" != "head" ]; then git checkout ${TF_SERVING_VERSION_GIT_COMMIT} ; fi
FROM base_build as binary_build
# Build, and install TensorFlow Serving
ARG TF_SERVING_BUILD_OPTIONS="--config=nativeopt"
RUN echo "Building with build options: ${TF_SERVING_BUILD_OPTIONS}"
ARG TF_SERVING_BAZEL_OPTIONS=""
RUN echo "Building with Bazel options: ${TF_SERVING_BAZEL_OPTIONS}"
RUN bazel build --color=yes --curses=yes 
${TF_SERVING_BAZEL_OPTIONS} 
--verbose_failures 
--output_filter=DONT_MATCH_ANYTHING 
${TF_SERVING_BUILD_OPTIONS} 
tensorflow_serving/model_servers:tensorflow_model_server && 
cp bazel-bin/tensorflow_serving/model_servers/tensorflow_model_server 
/usr/local/bin/
# Build and install TensorFlow Serving API
RUN bazel build --color=yes --curses=yes 
${TF_SERVING_BAZEL_OPTIONS} 
--verbose_failures 
--output_filter=DONT_MATCH_ANYTHING 
${TF_SERVING_BUILD_OPTIONS} 
tensorflow_serving/tools/pip_package:build_pip_package && 
bazel-bin/tensorflow_serving/tools/pip_package/build_pip_package 
/tmp/pip && 
pip --no-cache-dir install --upgrade 
/tmp/pip/tensorflow_serving_api-*.whl && 
rm -rf /tmp/pip
FROM binary_build as clean_build
# Clean up Bazel cache when done.
RUN bazel clean --expunge --color=yes && 
rm -rf /root/.cache
CMD ["/bin/bash"]

相关内容

  • 没有找到相关文章

最新更新