我知道如何在Spark SQL中编写UDF:
def belowThreshold(power: Int): Boolean = {
return power < -40
}
sqlContext.udf.register("belowThreshold", belowThreshold _)
我可以做类似的事情来定义聚合函数吗?这是如何做到的呢?
对于上下文,我想运行以下SQL查询:
val aggDF = sqlContext.sql("""SELECT span, belowThreshold(opticalReceivePower), timestamp
FROM ifDF
WHERE opticalReceivePower IS NOT null
GROUP BY span, timestamp
ORDER BY span""")
它应该返回类似
的内容 Row(span1, false, T0)
我希望聚合函数告诉我span
和timestamp
定义的组中是否有任何opticalReceivePower
的值低于阈值。我是否需要写我的UDF不同于我上面粘贴的UDF ?
支持的方法
Spark>= 3.0
Scala UserDefinedAggregateFunction
正在被弃用(SPARK-30423 Deprecate UserDefinedAggregateFunction)以支持注册的Aggregator
。
Spark>= 2.3
向量化udf(仅限Python):
from pyspark.sql.functions import pandas_udf
from pyspark.sql.functions import PandasUDFType
from pyspark.sql.types import *
import pandas as pd
df = sc.parallelize([
("a", 0), ("a", 1), ("b", 30), ("b", -50)
]).toDF(["group", "power"])
def below_threshold(threshold, group="group", power="power"):
@pandas_udf("struct<group: string, below_threshold: boolean>", PandasUDFType.GROUPED_MAP)
def below_threshold_(df):
df = pd.DataFrame(
df.groupby(group).apply(lambda x: (x[power] < threshold).any()))
df.reset_index(inplace=True, drop=False)
return df
return below_threshold_
使用例子:
df.groupBy("group").apply(below_threshold(-40)).show()
## +-----+---------------+
## |group|below_threshold|
## +-----+---------------+
## | b| true|
## | a| false|
## +-----+---------------+
请参见在PySpark中对GroupedData应用udf(带功能python示例)
Spark>= 2.0(可选1.6,但API略有不同):
在Datasets
类型上使用Aggregators
是可能的:
import org.apache.spark.sql.expressions.Aggregator
import org.apache.spark.sql.{Encoder, Encoders}
class BelowThreshold[I](f: I => Boolean) extends Aggregator[I, Boolean, Boolean]
with Serializable {
def zero = false
def reduce(acc: Boolean, x: I) = acc | f(x)
def merge(acc1: Boolean, acc2: Boolean) = acc1 | acc2
def finish(acc: Boolean) = acc
def bufferEncoder: Encoder[Boolean] = Encoders.scalaBoolean
def outputEncoder: Encoder[Boolean] = Encoders.scalaBoolean
}
val belowThreshold = new BelowThreshold[(String, Int)](_._2 < - 40).toColumn
df.as[(String, Int)].groupByKey(_._1).agg(belowThreshold)
Spark>= 1.5:
在Spark 1.5中,您可以像这样创建UDAF,尽管这很可能是多余的:
import org.apache.spark.sql.expressions._
import org.apache.spark.sql.types._
import org.apache.spark.sql.Row
object belowThreshold extends UserDefinedAggregateFunction {
// Schema you get as an input
def inputSchema = new StructType().add("power", IntegerType)
// Schema of the row which is used for aggregation
def bufferSchema = new StructType().add("ind", BooleanType)
// Returned type
def dataType = BooleanType
// Self-explaining
def deterministic = true
// zero value
def initialize(buffer: MutableAggregationBuffer) = buffer.update(0, false)
// Similar to seqOp in aggregate
def update(buffer: MutableAggregationBuffer, input: Row) = {
if (!input.isNullAt(0))
buffer.update(0, buffer.getBoolean(0) | input.getInt(0) < -40)
}
// Similar to combOp in aggregate
def merge(buffer1: MutableAggregationBuffer, buffer2: Row) = {
buffer1.update(0, buffer1.getBoolean(0) | buffer2.getBoolean(0))
}
// Called on exit to get return value
def evaluate(buffer: Row) = buffer.getBoolean(0)
}
使用例子:
df
.groupBy($"group")
.agg(belowThreshold($"power").alias("belowThreshold"))
.show
// +-----+--------------+
// |group|belowThreshold|
// +-----+--------------+
// | a| false|
// | b| true|
// +-----+--------------+
Spark 1.4解决方案:
我不确定我是否正确理解你的要求,但据我所知,普通的旧聚合在这里应该足够了:
val df = sc.parallelize(Seq(
("a", 0), ("a", 1), ("b", 30), ("b", -50))).toDF("group", "power")
df
.withColumn("belowThreshold", ($"power".lt(-40)).cast(IntegerType))
.groupBy($"group")
.agg(sum($"belowThreshold").notEqual(0).alias("belowThreshold"))
.show
// +-----+--------------+
// |group|belowThreshold|
// +-----+--------------+
// | a| false|
// | b| true|
// +-----+--------------+
Spark <= 1.4:
据我所知,在这个时刻(Spark 1.4.1),没有UDAF的支持,除了Hive的。在Spark 1.5中应该可以实现(参见Spark -3947)。
不支持的/内部方法
Spark内部使用了许多类,包括ImperativeAggregates
和DeclarativeAggregates
。
是为了内部使用,可能会在没有进一步通知的情况下改变,所以它可能不是你想在生产代码中使用的东西,但是为了完整性,BelowThreshold
和DeclarativeAggregate
可以这样实现(用Spark 2.2-SNAPSHOT测试):
import org.apache.spark.sql.catalyst.expressions.aggregate.DeclarativeAggregate
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.types._
case class BelowThreshold(child: Expression, threshold: Expression)
extends DeclarativeAggregate {
override def children: Seq[Expression] = Seq(child, threshold)
override def nullable: Boolean = false
override def dataType: DataType = BooleanType
private lazy val belowThreshold = AttributeReference(
"belowThreshold", BooleanType, nullable = false
)()
// Used to derive schema
override lazy val aggBufferAttributes = belowThreshold :: Nil
override lazy val initialValues = Seq(
Literal(false)
)
override lazy val updateExpressions = Seq(Or(
belowThreshold,
If(IsNull(child), Literal(false), LessThan(child, threshold))
))
override lazy val mergeExpressions = Seq(
Or(belowThreshold.left, belowThreshold.right)
)
override lazy val evaluateExpression = belowThreshold
override def defaultResult: Option[Literal] = Option(Literal(false))
}
应该用等价的withAggregateFunction
进一步包装。
在Spark(3.0+)中定义和使用UDF:
private static UDF1<Integer, Boolean> belowThreshold = (power) -> power < -40;
注册UDF:
SparkSession.builder()
.appName(appName)
.master(master)
.getOrCreate().udf().register("belowThreshold", belowThreshold, BooleanType);
使用UDF由Spark SQL:
spark.sql("SELECT belowThreshold('50')");