来自sklearn的Tfidfvectorizer语言 - 如何获得矩阵



我想从sklearn的Tfidfvectorizer对象中获取矩阵。这是我的代码:

from sklearn.feature_extraction.text import TfidfVectorizer
text = ["The quick brown fox jumped over the lazy dog.",
        "The dog.",
        "The fox"]
vectorizer = TfidfVectorizer()
vectorizer.fit_transform(text)

这是我尝试并返回错误的:

vectorizer.toarray()
--------------------------------------------------------------------------- 
AttributeError                            Traceback (most recent call last) <ipython-input-117-76146e626284> in <module>()   
----> 1 vectorizer.toarray()
AttributeError: 'TfidfVectorizer' object has no attribute 'toarray'

另一次尝试

vectorizer.todense()
---------------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-118-6386ee121184> in <module>()
----> 1 vectorizer.todense()
AttributeError: 'TfidfVectorizer' object has no attribute 'todense'

请注意,vectorizer.fit_transform返回要获取的术语文档矩阵。因此,保存它返回的内容,并使用 todense ,因为它将是稀疏格式:

返回: X : 稀疏矩阵, [n_samples, n_features]. Tf-idf 加权文档术语矩阵。

a = vectorizer.fit_transform(text)
a.todense()
matrix([[0.36388646, 0.27674503, 0.27674503, 0.36388646, 0.36388646,
         0.36388646, 0.36388646, 0.42983441],
        [0.        , 0.78980693, 0.        , 0.        , 0.        ,
         0.        , 0.        , 0.61335554],
        [0.        , 0.        , 0.78980693, 0.        , 0.        ,
         0.        , 0.        , 0.61335554]])

.fit_transform本身返回一个文档术语矩阵。因此,您可以:

matrix = vectorizer.fit_transform(text)

matrix.todense()用于将稀疏矩阵转换为密集矩阵。
matrix.shape将为您提供矩阵的形状。

相关内容

  • 没有找到相关文章

最新更新