我想根据组上一行中该列的值来设置列的值。然后,此更新的值将在下一行中使用。
我有以下数据帧
id | start_date|sort_date | A | B |
-----------------------------------
1 | 1/1/2017 | 31-01-2015 | 1 | 0 |
1 | 1/1/2017 | 28-02-2015 | 0 | 0 |
1 | 1/1/2017 | 31-03-2015 | 1 | 0 |
1 | 1/1/2017 | 30-04-2015 | 1 | 0 |
1 | 1/1/2017 | 31-05-2015 | 1 | 0 |
1 | 1/1/2017 | 30-06-2015 | 1 | 0 |
1 | 1/1/2017 | 31-07-2015 | 1 | 0 |
1 | 1/1/2017 | 31-08-2015 | 1 | 0 |
1 | 1/1/2017 | 30-09-2015 | 0 | 0 |
2 | 1/1/2017 | 31-10-2015 | 1 | 0 |
2 | 1/1/2017 | 30-11-2015 | 0 | 0 |
2 | 1/1/2017 | 31-12-2015 | 1 | 0 |
2 | 1/1/2017 | 31-01-2016 | 1 | 0 |
2 | 1/1/2017 | 28-02-2016 | 1 | 0 |
2 | 1/1/2017 | 31-03-2016 | 1 | 0 |
2 | 1/1/2017 | 30-04-2016 | 1 | 0 |
2 | 1/1/2017 | 31-05-2016 | 1 | 0 |
2 | 1/1/2017 | 30-06-2016 | 0 | 0 |
输出:
id | start_date|sort_date | A | B | C
---------------------------------------
1 | 1/1/2017 | 31-01-2015 | 1 | 0 | 1
1 | 1/1/2017 | 28-02-2015 | 0 | 0 | 0
1 | 1/1/2017 | 31-03-2015 | 1 | 0 | 1
1 | 1/1/2017 | 30-04-2015 | 1 | 0 | 2
1 | 1/1/2017 | 31-05-2015 | 1 | 0 | 3
1 | 1/1/2017 | 30-06-2015 | 1 | 0 | 4
1 | 1/1/2017 | 31-07-2015 | 1 | 0 | 5
1 | 1/1/2017 | 31-08-2015 | 1 | 0 | 6
1 | 1/1/2017 | 30-09-2015 | 0 | 0 | 0
2 | 1/1/2017 | 31-10-2015 | 1 | 0 | 1
2 | 1/1/2017 | 30-11-2015 | 0 | 0 | 0
2 | 1/1/2017 | 31-12-2015 | 1 | 0 | 1
2 | 1/1/2017 | 31-01-2016 | 1 | 0 | 2
2 | 1/1/2017 | 28-02-2016 | 1 | 0 | 3
2 | 1/1/2017 | 31-03-2016 | 1 | 0 | 4
2 | 1/1/2017 | 30-04-2016 | 1 | 0 | 5
2 | 1/1/2017 | 31-05-2016 | 1 | 0 | 6
2 | 1/1/2017 | 30-06-2016 | 0 | 0 | 0
组的 ID 和日期
C 列是基于 A 列和 B 列派生的。
如果 A == 1和 B == 0,则 C 是从前一行 + 1 派生的 C。
还有其他一些条件,但我正在为这部分而苦苦挣扎。
假设我们在数据框中有一个列sort_date。
我尝试了以下查询:
SELECT
id,
date,
sort_date,
lag(A) OVER (PARTITION BY id, date ORDER BY sort_date) as prev,
CASE
WHEN A=1 AND B= 0 THEN 1
WHEN A=1 AND B> 0 THEN prev +1
ELSE 0
END AS A
FROM
Table
这就是我为UDAF所做的
val myFunc = new MyUDAF
val w = Window.partitionBy(col("ID"), col("START_DATE")).orderBy(col("SORT_DATE"))
val df = df.withColumn("C", myFunc(col("START_DATE"), col("X"),
col("Y"), col("A"),
col("B")).over(w))
附言:我正在使用Spark 1.6
首先定义一个窗口:
import org.apache.spark.sql.expressions.Window
val winspec = Window.partitionBy("id","start_date").orderBy("sort_date")
接下来创建一个UDAF,它接收A和B,基本上从0开始计算C,每当条件出现时更改为0(A = 1,B = 0),并在任何其他时间增加1。要了解如何编写 UDAF,请参阅此处、此处和此处的示例
编辑以下是 UDAF 的示例实现(未真正测试,因此可能存在拼写错误):
import org.apache.spark.sql.Row
import org.apache.spark.sql.expressions.{MutableAggregationBuffer,UserDefinedAggregateFunction}
import org.apache.spark.sql.types._
class myFunc() extends UserDefinedAggregateFunction {
// Input Data Type Schema
def inputSchema: StructType = StructType(Array(StructField("A", IntegerType), StructField("A", IntegerType)))
// Intermediate Schema
def bufferSchema = StructType(Array(StructField("C", IntegerType)))
// Returned Data Type .
def dataType: DataType = IntegerType
// Self-explaining
def deterministic = true
// This function is called whenever key changes
def initialize(buffer: MutableAggregationBuffer) = {
buffer(0) = 0 // set number of items to 0
}
// Iterate over each entry of a group
def update(buffer: MutableAggregationBuffer, input: Row) = {
buffer(0) = if (input.getInt(0) == 1 && input.getInt(1) == 0) buffer.getInt(0) + 1 else 0
}
// Merge two partial aggregates - doesn't really matter because the window will make sure the buffer remains in a
// single partition
def merge(buffer1: MutableAggregationBuffer, buffer2: Row) = {
buffer1(0) = buffer1.getInt(0) + buffer2.getInt(0)
}
// Called after all the entries are exhausted.
def evaluate(buffer: Row) = {
buffer.getInt(0)
}
}
最后将其应用于数据帧。假设您将 UDAF 命名为 myFunc:
val f = new myFunc()
val newDF = df.withColumn("newC", f($"A",$"B").over(winspec))