假设我们有以下文本文件(df.show()
命令的输出):
+----+---------+--------+
|col1| col2| col3|
+----+---------+--------+
| 1|pi number|3.141592|
| 2| e number| 2.71828|
+----+---------+--------+
现在我想将其读取/解析为数据帧/数据集。最"闪闪发光"的方法是什么?
附言我对scala
和pyspark
的解决方案感兴趣,这就是使用这两个标签的原因。
更新
:使用"UNIVOCITY"解析器库,我可以摆脱删除列名中空格的一行:
斯卡拉:
// read Spark Output Fixed width table:
def readSparkOutput(filePath: String) : org.apache.spark.sql.DataFrame = {
val t = spark.read
.option("header","true")
.option("inferSchema","true")
.option("delimiter","|")
.option("parserLib","UNIVOCITY")
.option("ignoreLeadingWhiteSpace","true")
.option("ignoreTrailingWhiteSpace","true")
.option("comment","+")
.csv(filePath)
t.select(t.columns.filterNot(_.startsWith("_c")).map(t(_)):_*)
}
PySpark:
def read_spark_output(file_path):
t = spark.read
.option("header","true")
.option("inferSchema","true")
.option("delimiter","|")
.option("parserLib","UNIVOCITY")
.option("ignoreLeadingWhiteSpace","true")
.option("ignoreTrailingWhiteSpace","true")
.option("comment","+")
.csv("file:///tmp/spark.out")
# select not-null columns
return t.select([c for c in t.columns if not c.startswith("_")])
使用示例:
scala> val df = readSparkOutput("file:///tmp/spark.out")
df: org.apache.spark.sql.DataFrame = [col1: int, col2: string ... 1 more field]
scala> df.show
+----+---------+--------+
|col1| col2| col3|
+----+---------+--------+
| 1|pi number|3.141592|
| 2| e number| 2.71828|
+----+---------+--------+
scala> df.printSchema
root
|-- col1: integer (nullable = true)
|-- col2: string (nullable = true)
|-- col3: double (nullable = true)
旧答案:
这是我在scala(Spark 2.2)中的尝试:
// read Spark Output Fixed width table:
val t = spark.read
.option("header","true")
.option("inferSchema","true")
.option("delimiter","|")
.option("comment","+")
.csv("file:///temp/spark.out")
// select not-null columns
val cols = t.columns.filterNot(c => c.startsWith("_c")).map(a => t(a))
// trim spaces from columns
val colsTrimmed = t.columns.filterNot(c => c.startsWith("_c")).map(c => c.replaceAll("\s+",""))
// reanme columns using 'colsTrimmed'
val df = t.select(cols:_*).toDF(colsTrimmed:_*)
它有效,但我有一种感觉,必须有更优雅的方式来做到这一点。
scala> df.show
+----+---------+--------+
|col1| col2| col3|
+----+---------+--------+
| 1.0|pi number|3.141592|
| 2.0| e number| 2.71828|
+----+---------+--------+
scala> df.printSchema
root
|-- col1: double (nullable = true)
|-- col2: string (nullable = true)
|-- col3: double (nullable = true)