我想使用LeaveOneGroupOut
策略来评估我的模型。根据sklearn的文件,cross_val_score
似乎很方便。
但是,下面的代码不能工作。
import sklearn
from sklearn import datasets
iris = datasets.load_iris()
from sklearn.model_selection import cross_val_score
clf = sklearn.svm.SVC(kernel='linear', C=1)
# cv = ShuffleSplit(n_splits=3, test_size=0.3, random_state=0) # => this works
cv = LeaveOneGroupOut # => this does not work
scores = cross_val_score(clf, iris.data, iris.target, cv=cv)
错误信息是:
ValueError Traceback (most recent call last)
<ipython-input-40-435a3a7fa16c> in <module>()
4 from sklearn.model_selection import cross_val_score
5 clf = sklearn.svm.SVC(kernel='linear', C=1)
----> 6 scores = cross_val_score(clf, iris.data, iris.target, cv=LeaveOneGroupOut())
7 scores
/Users/xxx/.pyenv/versions/anaconda-2.0.1/lib/python2.7/site-packages/sklearn/model_selection/_validation.pyc in cross_val_score(estimator, X, y, groups, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch)
138 train, test, verbose, None,
139 fit_params)
--> 140 for train, test in cv.split(X, y, groups))
141 return np.array(scores)[:, 0]
142
/Users/xxx/.pyenv/versions/anaconda-2.0.1/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
756 # was dispatched. In particular this covers the edge
757 # case of Parallel used with an exhausted iterator.
--> 758 while self.dispatch_one_batch(iterator):
759 self._iterating = True
760 else:
/Users/xxx/.pyenv/versions/anaconda-2.0.1/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in dispatch_one_batch(self, iterator)
601
602 with self._lock:
--> 603 tasks = BatchedCalls(itertools.islice(iterator, batch_size))
604 if len(tasks) == 0:
605 # No more tasks available in the iterator: tell caller to stop.
/Users/xxx/.pyenv/versions/anaconda-2.0.1/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __init__(self, iterator_slice)
125
126 def __init__(self, iterator_slice):
--> 127 self.items = list(iterator_slice)
128 self._size = len(self.items)
129
/Users/xxx/.pyenv/versions/anaconda-2.0.1/lib/python2.7/site-packages/sklearn/model_selection/_validation.pyc in <genexpr>(***failed resolving arguments***)
135 parallel = Parallel(n_jobs=n_jobs, verbose=verbose,
136 pre_dispatch=pre_dispatch)
--> 137 scores = parallel(delayed(_fit_and_score)(clone(estimator), X, y, scorer,
138 train, test, verbose, None,
139 fit_params)
/Users/xxx/.pyenv/versions/anaconda-2.0.1/lib/python2.7/site-packages/sklearn/model_selection/_split.pyc in split(self, X, y, groups)
88 X, y, groups = indexable(X, y, groups)
89 indices = np.arange(_num_samples(X))
---> 90 for test_index in self._iter_test_masks(X, y, groups):
91 train_index = indices[np.logical_not(test_index)]
92 test_index = indices[test_index]
/Users/xxx/.pyenv/versions/anaconda-2.0.1/lib/python2.7/site-packages/sklearn/model_selection/_split.pyc in _iter_test_masks(self, X, y, groups)
770 def _iter_test_masks(self, X, y, groups):
771 if groups is None:
--> 772 raise ValueError("The groups parameter should not be None")
773 # We make a copy of groups to avoid side-effects during iteration
774 groups = np.array(groups, copy=True)
ValueError: The groups parameter should not be None
scores
您没有定义groups参数,该参数是您要拆分数据的组。
错误来自cross_val_score,在你的情况下,它等于None
试着遵循下面的例子:
from sklearn.model_selection import LeaveOneGroupOut
X = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
y = np.array([1, 2, 1, 2])
groups = np.array([1, 1, 2, 2])
lol = LeaveOneGroupOut()
你有:
[In] lol.get_n_splits(X, y, groups)
[Out] 2
那么你就可以使用:
lol.split(X, y, groups)