我是Spark API的新手。我正试图从字符串列col_date(具有日期时间戳,例如"13AUG15:09:40:15")中提取工作日编号,并添加另一列作为工作日(整数)。我做不成功。
下面的方法对我有效,使用了一个"单行"udf-与上面类似但不同:
from pyspark.sql import SparkSession, functions
spark = SparkSession.builder.appName('dayofweek').getOrCreate()
设置数据帧:
df = spark.createDataFrame(
[(1, "2018-05-12")
,(2, "2018-05-13")
,(3, "2018-05-14")
,(4, "2018-05-15")
,(5, "2018-05-16")
,(6, "2018-05-17")
,(7, "2018-05-18")
,(8, "2018-05-19")
,(9, "2018-05-20")
], ("id", "date"))
设置udf:
from pyspark.sql.functions import udf,desc
from datetime import datetime
weekDay = udf(lambda x: datetime.strptime(x, '%Y-%m-%d').strftime('%w'))
df = df.withColumn('weekDay', weekDay(df['date'])).sort(desc("date"))
结果:
df.show()
+---+----------+-------+
| id| date|weekDay|
+---+----------+-------+
| 9|2018-05-20| 0|
| 8|2018-05-19| 6|
| 7|2018-05-18| 5|
| 6|2018-05-17| 4|
| 5|2018-05-16| 3|
| 4|2018-05-15| 2|
| 3|2018-05-14| 1|
| 2|2018-05-13| 0|
| 1|2018-05-12| 6|
+---+----------+-------+
这很简单。
这个简单的函数生成所有作业,并将工作日返回为数字(星期一=1):
from time import time
from datetime import datetime
# get weekdays and daily hours from timestamp
def toWeekDay(x):
# v = datetime.strptime(datetime.fromtimestamp(int(x)).strftime("%Y %m %d %H"), "%Y %m %d %H").strftime('%w') - from unix timestamp
v = datetime.strptime(x, '%d%b%y:%H:%M:%S').strftime('%w')
return v
days = ['13AUG15:09:40:15','27APR16:20:04:35'] # create example dates
days = sc.parallelize(days) # for example purposes - transform python list to RDD so we can do it in a 'Spark [parallel] way'
days.take(2) # to see whats in RDD
> ['13AUG15:09:40:15', '27APR16:20:04:35']
result = v.map(lambda x: (toWeekDay(x))) # apply functon toWeekDay on each element of RDD
result.take(2) # lets see results
> ['4', '3']
有关日期时间处理的更多详细信息,请参阅Python文档。