这个问题听起来有点笼统,但我认为一个例子会更清楚:
我有以下两个数据框
数据1
group1 group2 group3 Level
cat cat dog 1
dog parrot cat 1
mouse dolphin dolphin 1
red blue blue 2
green yellow green 2
black purple cat 2
数据2
var1 level Score
cat 1 1
dog 1 1
mouse 1 1
dolphin 1 0
parrot 1 1
red 2 1
blue 2 1
green 2 1
purple 2 1
cat 2 0
black 2 0
yellow 2 1
我想修改 data1,其中包含 3 个新列(每个组 1、组 2 和组 3 一个(,根据"级别"的水平(级别是一个因素(,我在 data2 的"分数"列中找到的值。所以基本上我想获得这样的东西:
group1 group2 group3 Level var1 var2 var3
cat cat dog 1 1 1 1
dog parrot cat 1 1 1 1
mouse dolphin dolphin 1 1 0 0
red blue blue 2 1 1 1
green yellow green 2 1 1 1
black purple cat 2 0 1 0
示例数据
df1 <- structure(list(
group1 = c("cat", "dog", "mouse", "red", "green", "black"),
group2 = c("cat", "parrot", "dolphin", "blue", "yellow", "purple"),
group3 = c("dog", "cat", "dolphin", "blue", "green", "cat"),
Level = structure(c(1L, 1L, 1L, 2L, 2L, 2L), .Label = c("1", "2"), class = "factor")),
row.names = c(NA, -6L), class = "data.frame")
df2 <- structure(list(
var1 = c("cat", "dog", "mouse", "dolphin", "parrot", "red", "blue", "green", "purple", "cat", "black", "yellow"),
level = structure(c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L), .Label = c("1", "2"), class = "factor"),
Score = c(1L, 1L, 1L, 0L, 1L, 1L, 1L, 1L, 1L, 0L, 0L, 1L)),
row.names = c(NA, -12L), class = "data.frame")
我们可以将第一个数据集透视为"long"格式,与第二个数据集连接,然后将其透视回"宽"格式
library(dplyr)
library(tidyr)
library(stringr)
df1 %>%
mutate(rn = row_number()) %>%
pivot_longer(cols = -c(rn, Level), values_to = 'var1') %>%
rename(level = Level) %>%
left_join(df2) %>%
mutate(name = str_replace(name, 'group', 'varn')) %>%
na.omit %>%
select(-level, -var1) %>%
pivot_wider(names_from = name, values_from = Score, values_fill = list(Score = 0)) %>%
select(-rn) %>%
bind_cols(df1, .)
# group1 group2 group3 Level varn1 varn2 varn3
#1 cat cat dog 1 1 1 1
#2 dog parrot cat 1 1 0 1
#3 mouse dolphin dolphin 1 1 0 0
#4 red blue blue 2 1 1 1
#5 green yellow green 2 1 0 1
#6 black purple cat 2 0 1 0
我按purrr::reduce()
递归地将df2
合并到df1
三次。在这一部分中,我复制了df2
三次,并分别更改了它们的第一列名称以匹配df1
列名称。
library(tidyverse)
df2 %>%
list %>% rep(3) %>%
imap(~ setNames(.x, c(str_c("group", .y), "Level", str_c("Score", .y)))) %>%
reduce(left_join, .init = df1)
# group1 group2 group3 Level Score1 Score2 Score3
# 1 cat cat dog 1 1 1 1
# 2 dog parrot cat 1 1 1 1
# 3 mouse dolphin dolphin 1 1 0 0
# 4 red blue blue 2 1 1 1
# 5 green yellow green 2 1 1 1
# 6 black purple cat 2 0 1 0