我想将功能"流派"散列为 6 列,并将"发布者"单独分解为另外 6 列。我想要下面这样的东西:
Genre Publisher 0 1 2 3 4 5 0 1 2 3 4 5
0 Platform Nintendo 0.0 2.0 2.0 -1.0 1.0 0.0 0.0 2.0 2.0 -1.0 1.0 0.0
1 Racing Noir -1.0 0.0 0.0 0.0 0.0 -1.0 -1.0 0.0 0.0 0.0 0.0 -1.0
2 Sports Laura -2.0 2.0 0.0 -2.0 0.0 0.0 -2.0 2.0 0.0 -2.0 0.0 0.0
3 Roleplaying John -2.0 2.0 2.0 0.0 1.0 0.0 -2.0 2.0 2.0 0.0 1.0 0.0
4 Puzzle John 0.0 1.0 1.0 -2.0 1.0 -1.0 0.0 1.0 1.0 -2.0 1.0 -1.0
5 Platform Noir 0.0 2.0 2.0 -1.0 1.0 0.0 0.0 2.0 2.0 -1.0 1.0 0.0
以下代码执行我想执行的操作
import pandas as pd
d = {'Genre': ['Platform', 'Racing','Sports','Roleplaying','Puzzle','Platform'], 'Publisher': ['Nintendo', 'Noir','Laura','John','John','Noir']}
df = pd.DataFrame(data=d)
from sklearn.feature_extraction import FeatureHasher
fh1 = FeatureHasher(n_features=6, input_type='string')
fh2 = FeatureHasher(n_features=6, input_type='string')
hashed_features1 = fh.fit_transform(df['Genre'])
hashed_features2 = fh.fit_transform(df['Publisher'])
hashed_features1 = hashed_features1.toarray()
hashed_features2 = hashed_features2.toarray()
pd.concat([df[['Genre', 'Publisher']], pd.DataFrame(hashed_features1),pd.DataFrame(hashed_features2)],
axis=1)
这适用于上述两个功能,但是如果我有 40 个分类功能,那么这种方法将很乏味。还有其他方法吗?
(更新)
假设新类别可能会出现在某些功能中,哈希是要走的路。只需 2 个音符:
- 注意碰撞的可能性并相应地调整要素数量
- 在您的情况下,您希望单独对每个功能进行哈希处理
一个热矢量
如果每个要素的类别数量是固定的并且不太大,请使用一种热编码。
我建议使用两者之一:
-
sklearn.preprocessing.OneHotEncoder
-
pandas.get_dummies
例
import pandas as pd
from sklearn.compose import ColumnTransformer
from sklearn.feature_extraction import FeatureHasher
from sklearn.preprocessing import OneHotEncoder
df = pd.DataFrame({'feature_1': ['A', 'G', 'T', 'A'],
'feature_2': ['cat', 'dog', 'elephant', 'zebra']})
# Approach 0 (Hashing per feature)
n_orig_features = df.shape[1]
hash_vector_size = 6
ct = ColumnTransformer([(f't_{i}', FeatureHasher(n_features=hash_vector_size,
input_type='string'), i) for i in range(n_orig_features)])
res_0 = ct.fit_transform(df) # res_0.shape[1] = n_orig_features * hash_vector_size
# Approach 1 (OHV)
res_1 = pd.get_dummies(df)
# Approach 2 (OHV)
res_2 = OneHotEncoder(sparse=False).fit_transform(df)
res_0
:
array([[ 0., 0., 0., 0., 1., 0., 0., 0., 1., -1., 0., -1.],
[ 0., 0., 0., 1., 0., 0., 0., 2., -1., 0., 0., 0.],
[ 0., -1., 0., 0., 0., 0., -2., 2., 2., -1., 0., -1.],
[ 0., 0., 0., 0., 1., 0., 0., 2., 1., -1., 0., -1.]])
res_1
:
feature_1_A feature_1_G feature_1_T feature_2_cat feature_2_dog feature_2_elephant feature_2_zebra
0 1 0 0 1 0 0 0
1 0 1 0 0 1 0 0
2 0 0 1 0 0 1 0
3 1 0 0 0 0 0 1
res_2
:
array([[1., 0., 0., 1., 0., 0., 0.],
[0., 1., 0., 0., 1., 0., 0.],
[0., 0., 1., 0., 0., 1., 0.],
[1., 0., 0., 0., 0., 0., 1.]])
尽管我在这里迟到了,但从我在 Kaggle 上看到的示例来看,FeatureHashing 是一次对多个列(即在数据帧上)执行的,而不是针对单个列并连接稀疏矩阵。请参阅Kaggle上的笔记本,这里和这里。我还使用了两种方式对此数据执行特征散列,即:
a. 对单个分类列进行哈希处理并连接结果
b.一次对数据帧的所有分类列进行哈希处理
当遵循方法(b)而不是方法(a)时,逻辑回归分类器给出了明显更好的结果。