我试图求解一个平方的线性系统Xc=y
。我知道解决这个问题的方法是:
- 使用逆
c=<X^-1,y>
- 使用高斯消去法
- 使用伪逆
据我所知,这些似乎与我认为的基本事实不符。
- 首先通过将30次多项式拟合到频率为5的余弦来生成真值参数。所以我有
y_truth = X*c_truth
- 然后我检查以上三种方法是否符合事实
我试过了,但方法似乎不匹配,我不明白为什么会这样。
我制作了完全可运行的可复制代码:
import numpy as np
from sklearn.preprocessing import PolynomialFeatures
## some parameters
degree_target = 25
N_train = degree_target+1
lb,ub = -2000,2000
x = np.linspace(lb,ub,N_train)
## generate target polynomial model
freq_cos = 5
y_cos = np.cos(2*np.pi*freq_cos*x)
c_polyfit = np.polyfit(x,y_cos,degree_target)[::-1] ## needs to me reverse to get highest power last
## generate kernel matrix
poly_feat = PolynomialFeatures(degree=degree_target)
K = poly_feat.fit_transform(x.reshape(N_train,1)) # generates degree 0 first
## get target samples of the function
y = np.dot(K,c_polyfit)
## get pinv approximation of c_polyfit
c_pinv = np.dot( np.linalg.pinv(K), y)
## get Gaussian-Elminiation approximation of c_polyfit
c_GE = np.linalg.solve(K,y)
## get inverse matrix approximation of c_polyfit
i = np.linalg.inv(K)
c_mdl_i = np.dot(i,y)
## check rank to see if its truly invertible
print('rank(K) = {}'.format( np.linalg.matrix_rank(K) ))
## comapre parameters
print('--c_polyfit')
print('||c_polyfit-c_GE||^2 = {}'.format( np.linalg.norm(c_polyfit-c_GE) ))
print('||c_polyfit-c_pinv||^2 = {}'.format( np.linalg.norm(c_polyfit-c_pinv) ))
print('||c_polyfit-c_mdl_i||^2 = {}'.format( np.linalg.norm(c_polyfit-c_mdl_i) ))
print('||c_polyfit-c_polyfit||^2 = {}'.format( np.linalg.norm(c_polyfit-c_polyfit) ))
##
print('--c_GE')
print('||c_GE-c_GE||^2 = {}'.format( np.linalg.norm(c_GE-c_GE) ))
print('||c_GE-c_pinv||^2 = {}'.format( np.linalg.norm(c_GE-c_pinv) ))
print('||c_GE-c_mdl_i||^2 = {}'.format( np.linalg.norm(c_GE-c_mdl_i) ))
print('||c_GE-c_polyfit||^2 = {}'.format( np.linalg.norm(c_GE-c_polyfit) ))
##
print('--c_pinv')
print('||c_pinv-c_GE||^2 = {}'.format( np.linalg.norm(c_pinv-c_GE) ))
print('||c_pinv-c_pinv||^2 = {}'.format( np.linalg.norm(c_pinv-c_pinv) ))
print('||c_pinv-c_mdl_i||^2 = {}'.format( np.linalg.norm(c_pinv-c_mdl_i) ))
print('||c_pinv-c_polyfit||^2 = {}'.format( np.linalg.norm(c_pinv-c_polyfit) ))
##
print('--c_mdl_i')
print('||c_mdl_i-c_GE||^2 = {}'.format( np.linalg.norm(c_mdl_i-c_GE) ))
print('||c_mdl_i-c_pinv||^2 = {}'.format( np.linalg.norm(c_mdl_i-c_pinv) ))
print('||c_mdl_i-c_mdl_i||^2 = {}'.format( np.linalg.norm(c_mdl_i-c_mdl_i) ))
print('||c_mdl_i-c_polyfit||^2 = {}'.format( np.linalg.norm(c_mdl_i-c_polyfit) ))
我得到的结果是:
rank(K) = 4
--c_polyfit
||c_polyfit-c_GE||^2 = 4.44089220304006e-16
||c_polyfit-c_pinv||^2 = 1.000000000000001
||c_polyfit-c_mdl_i||^2 = 1.1316233165135605e-06
||c_polyfit-c_polyfit||^2 = 0.0
--c_GE
||c_GE-c_GE||^2 = 0.0
||c_GE-c_pinv||^2 = 1.0000000000000007
||c_GE-c_mdl_i||^2 = 1.1316233160694804e-06
||c_GE-c_polyfit||^2 = 4.44089220304006e-16
--c_pinv
||c_pinv-c_GE||^2 = 1.0000000000000007
||c_pinv-c_pinv||^2 = 0.0
||c_pinv-c_mdl_i||^2 = 0.9999988683985006
||c_pinv-c_polyfit||^2 = 1.000000000000001
--c_mdl_i
||c_mdl_i-c_GE||^2 = 1.1316233160694804e-06
||c_mdl_i-c_pinv||^2 = 0.9999988683985006
||c_mdl_i-c_mdl_i||^2 = 0.0
||c_mdl_i-c_polyfit||^2 = 1.1316233165135605e-06
为什么?这是机器精密的东西吗?还是因为度数大(大于1)时误差累积(很多)?老实说,我不知道,但所有这些假设对我来说都很愚蠢。如果有人能发现我的错误,请随时指出。否则,我可能不懂线性代数或其他什么。。。这更令人担忧。
此外,如果我能得到这方面的建议,我将不胜感激。Do I:
- 将间隔的大小增加到不小于1(在数量级上)
- 我可以使用的最大多项式大小的次数是多少
- 不同的语言。。。?还是提高精度
欢迎提出任何建议!
问题在于浮点精度。你把0和1之间的数字提高到30次方,然后把它们加在一起。如果您使用无限精度算术来执行此操作,则这些方法将恢复输入。使用浮点运算,精度损失意味着您不能。