我用的是Spark 2.0。
我想执行以下SQL查询:
val sqlText = """
select
f.ID as TID,
f.BldgID as TBldgID,
f.LeaseID as TLeaseID,
f.Period as TPeriod,
coalesce(
(select
f ChargeAmt
from
Fact_CMCharges f
where
f.BldgID = Fact_CMCharges.BldgID
limit 1),
0) as TChargeAmt1,
f.ChargeAmt as TChargeAmt2,
l.EFFDATE as TBreakDate
from
Fact_CMCharges f
join
CMRECC l on l.BLDGID = f.BldgID and l.LEASID = f.LeaseID and l.INCCAT = f.IncomeCat and date_format(l.EFFDATE,'D')<>1 and f.Period=EFFDateInt(l.EFFDATE)
where
f.ActualProjected = 'Lease'
except(
select * from TT1 t2 left semi join Fact_CMCharges f2 on t2.TID=f2.ID)
"""
val query = spark.sql(sqlText)
query.show()
似乎coalesce
中的内部语句给出了以下错误:
pyspark.sql.utils.AnalysisException: u'Correlated scalar subqueries must be Aggregated: GlobalLimit 1n+- LocalLimit 1n
这个查询有什么问题?
您必须确保您的子查询按定义(而不是按数据)只返回单行。否则Spark Analyzer在解析SQL语句时报错。
因此,当catalyst不能100%确定仅通过查看SQL语句(不查看您的数据)子查询只返回单行时,将抛出此异常。
如果您确定子查询只给出单行,则可以使用以下聚合标准函数之一,因此Spark Analyzer很高兴:
-
first
-
avg
-
max
-
min