我正在尝试使用Python的Tfidf来转换文本语料库。但是,当我尝试fit_transform它时,我收到一个值错误 值错误:空词汇表;也许文件只包含停用词。
In [69]: TfidfVectorizer().fit_transform(smallcorp)
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-69-ac16344f3129> in <module>()
----> 1 TfidfVectorizer().fit_transform(smallcorp)
/Users/maxsong/anaconda/lib/python2.7/site-packages/sklearn/feature_extraction/text.pyc in fit_transform(self, raw_documents, y)
1217 vectors : array, [n_samples, n_features]
1218 """
-> 1219 X = super(TfidfVectorizer, self).fit_transform(raw_documents)
1220 self._tfidf.fit(X)
1221 # X is already a transformed view of raw_documents so
/Users/maxsong/anaconda/lib/python2.7/site-packages/sklearn/feature_extraction/text.pyc in fit_transform(self, raw_documents, y)
778 max_features = self.max_features
779
--> 780 vocabulary, X = self._count_vocab(raw_documents, self.fixed_vocabulary)
781 X = X.tocsc()
782
/Users/maxsong/anaconda/lib/python2.7/site-packages/sklearn/feature_extraction/text.pyc in _count_vocab(self, raw_documents, fixed_vocab)
725 vocabulary = dict(vocabulary)
726 if not vocabulary:
--> 727 raise ValueError("empty vocabulary; perhaps the documents only"
728 " contain stop words")
729
ValueError: empty vocabulary; perhaps the documents only contain stop words
我在这里通读了SO问题:使用TfidfVectorizer scikit-learn的自定义词汇表的问题,并尝试了ogrisel的建议,即使用TfidfVectorizer(**params).build_analyzer()(dataset2)来检查文本分析步骤的结果,这似乎按预期工作:下面的代码片段:
In [68]: TfidfVectorizer().build_analyzer()(smallcorp)
Out[68]:
[u'due',
u'to',
u'lack',
u'of',
u'personal',
u'biggest',
u'education',
u'and',
u'husband',
u'to',
我还有什么做错事吗? 我喂它的语料库只是一根巨大的长弦,上面穿插着换行符。
谢谢!
我想这是因为你只有一个字符串。尝试将其拆分为字符串列表,例如:
In [51]: smallcorp
Out[51]: 'Ah! Now I have done Philosophy,nI have finished Law and Medicine,nAnd sadly even Theology:nTaken fierce pains, from end to end.nNow here I am, a fool for sure!nNo wiser than I was before:'
In [52]: tf = TfidfVectorizer()
In [53]: tf.fit_transform(smallcorp.split('n'))
Out[53]:
<6x28 sparse matrix of type '<type 'numpy.float64'>'
with 31 stored elements in Compressed Sparse Row format>
在 0.12 版本中,我们将最小文档频率设置为 2,这意味着仅考虑至少出现两次的单词。要使示例正常工作,您需要设置 min_df=1
。从 0.13 开始,这是默认设置。所以我猜你使用的是 0.12,对吧?
如果您坚持只有一个字符串,也可以将单个字符串作为元组。而不是拥有:
smallcorp = "your text"
你宁愿把它放在一个元组中。
In [22]: smallcorp = ("your text",)
In [23]: tf.fit_transform(smallcorp)
Out[23]:
<1x2 sparse matrix of type '<type 'numpy.float64'>'
with 2 stored elements in Compressed Sparse Row format>
我也有同样的问题。将 int(nums) 列表转换为 str(nums) 列表没有帮助。但我转换为:
['d'+str(nums) for nums in set] #where d is some letter which mention, we work with strings
这很有帮助。