这是我的模型...试图将一个朋友放在一个循环表的n = 16次鲍时将一个朋友放在一个旁边。朋友有兴趣。一个彼此相邻的必须至少具有一个共同的兴趣。
int :N;
set of int: FRIENDS = 1..N;
set of int: POSITIONS = 1..N;
array[FRIENDS] of set of int: interests;
array[POSITIONS] of var FRIENDS : friends_at;
include "alldifferent.mzn";
constraint alldifferent(friend_at);
constraint forall(i in 2..N-1)(
(interests[friend_at[i+1]]<=interests[friend_at[i]] / interests[friend_at[i+1]]>=interests[friend_at[i]])
/
( interests[friend_at[i-1]]<=interests[friend_at[i]] / interests[friend_at[i-1]]>=interests[friend_at[i]])
/
( interests[friend_at[N]]<=interests[friend_at[1]] / interests[friend_at[N]]>=interests[friend_at[1]])
);
solve satisfy;
n = 16他们的兴趣阵列:
interests=[{1},{2,3},{3,2},{2},{2,3},{2,1},{1,3},{3},{2,1},{3,1},{1,2},{2},{2,3},{2,3},{3},{2}];
这是一个似乎有效的模型。主要方法是使用设定操作intersect
来确保两个邻居至少具有一个共同的兴趣。
int :N;
set of int: FRIENDS = 1..N;
set of int: POSITIONS = 1..N;
array[FRIENDS] of set of int: interests;
array[POSITIONS] of var FRIENDS : friend_at;
include "alldifferent.mzn";
constraint alldifferent(friend_at);
constraint
forall(i in 2..N-1) (
card(interests[friend_at[i+1]] intersect interests[friend_at[i]]) > 0
)
/
card(interests[friend_at[N]] intersect interests[friend_at[1]]) > 0;
解决满足;
n = 16; 兴趣= [{{1},{2,3},{3,2},{2},{2,3},{2,1},{1,3},{3},{3},{2,1},{3,1},{1,2},{2},{2,3},{2,3},{3},{2}];
输出[" friend_at :( friend_at) n" [ " p:(p)利益:(兴趣[friend_at [p]]) n" |p位于位置 ];
有很多解决方案,这是第一个:
friend_at:[7, 15, 14, 16, 13, 12, 11, 9, 10, 8, 5, 4, 3, 2, 6, 1]
p:1 interests:{1,3}
p:2 interests:3..3
p:3 interests:2..3
p:4 interests:2..2
p:5 interests:2..3
p:6 interests:2..2
p:7 interests:1..2
p:8 interests:1..2
p:9 interests:{1,3}
p:10 interests:3..3
p:11 interests:2..3
p:12 interests:2..2
p:13 interests:2..3
p:14 interests:2..3
p:15 interests:1..2
p:16 interests:1..1
这里可以检查所有邻居(包括第一个和最后一个邻居)至少具有一个共同利益。