我正在尝试将带有DataFrame文本的列转换为一个热编码矩阵。这在一段时间内运行良好,但由于我未知的原因已停止工作。消息中写道:"在'str'和'float'的实例之间不支持TypeError:'>'"对我来说,这似乎是无稽之谈,因为我只使用tekst数据。当我用一个小数据集重复实验时,LabelBinarizer工作得很好,并产生了所需的输出。
我注意到X_train数据帧的大小为4.6 GB。我的机器只有8GB。我应该意识到内存有限制吗?所有的数字都很小,我应该转换成int32和float32吗?
我可以重现下面的错误。但我不确定这是否提供了足够的信息。
from sklearn.preprocessing import LabelBinarizer
lb=LabelBinarizer()
s=['a','b','c','b','a']
df=pd.DataFrame (s)
df = pd.Series (s)
dd = X_train['state']
type(dd)
Out[9]: pandas.core.series.Series
type(df)
Out[10]: pandas.core.series.Series
lb.fit(dd)
Traceback (most recent call last):
File "<ipython-input-11-5ec245111e31>", line 1, in <module>
lb.fit(dd)
File "C:packagesAnaconda3libsite-packagessklearnpreprocessinglabel.py", line 296, in fit
self.y_type_ = type_of_target(y)
File "C:packagesAnaconda3libsite-packagessklearnutilsmulticlass.py", line 275, in type_of_target
if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1):
File "C:packagesAnaconda3libsite-packagesnumpylibarraysetops.py", line 214, in unique
ar.sort()
TypeError: '>' not supported between instances of 'str' and 'float'
lb.fit(df)
Out[12]: LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
df.value_counts()
Out[13]:
a 2
b 2
c 1
dtype: int64
dd.value_counts()
Out[14]:
MI 228601
CA 5020
TX 2420
FL 2237
IL 1310
SC 1304
OH 967
NY 673
MN 632
GA 535
NV 484
UT 477
PA 466
NJ 395
VA 385
NC 353
MD 349
AZ 329
ME 261
OK 248
AL 215
TN 207
WA 192
MA 182
IA 159
WI 159
OR 153
MO 151
CO 147
KY 146
IN 106
AR 82
LA 81
AK 79
UK 77
NB 77
MS 64
CT 60
DC 58
ON 51
DE 50
KS 37
RI 35
SD 33
ID 33
MT 28
NM 21
BC 17
WY 12
HI 10
NH 9
VT 7
VI 6
WV 6
PR 5
QC 5
QL 3
ND 2
BL 2
Name: state, dtype: int64
len(df)
Out[15]: 5
len(dd)
Out[16]: 250306
也许它的输入数据可能包含丢失的值。
from sklearn.preprocessing import LabelBinarizer
import numpy as np
import pandas as pd
lb = LabelBinarizer()
s = ['a','b','c','b','a', np.nan]
df = pd.DataFrame(s, columns=["state"])
df_binarized = lb.fit_transform(df['state'])
df_binarized
Traceback (most recent call last):
File "/home/kuroyanagi/.pyenv/versions/anaconda3-4.4.0/lib/python3.6/site-packages/IPython/core/interactiveshell.py", line 2881, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "<ipython-input-45-f16e01b4e1be>", line 4, in <module>
df_binarized = lb.fit_transform(df['state'])
File "/home/kuroyanagi/.pyenv/versions/anaconda3-4.4.0/lib/python3.6/site-packages/sklearn/base.py", line 494, in fit_transform
return self.fit(X, **fit_params).transform(X)
File "/home/kuroyanagi/.pyenv/versions/anaconda3-4.4.0/lib/python3.6/site-packages/sklearn/preprocessing/label.py", line 296, in fit
self.y_type_ = type_of_target(y)
File "/home/kuroyanagi/.pyenv/versions/anaconda3-4.4.0/lib/python3.6/site-packages/sklearn/utils/multiclass.py", line 275, in type_of_target
if (len(np.unique(y)) > 2) or (y.ndim >= 2 and len(y[0]) > 1):
File "/home/kuroyanagi/.pyenv/versions/anaconda3-4.4.0/lib/python3.6/site-packages/numpy/lib/arraysetops.py", line 210, in unique
return _unique1d(ar, return_index, return_inverse, return_counts)
File "/home/kuroyanagi/.pyenv/versions/anaconda3-4.4.0/lib/python3.6/site-packages/numpy/lib/arraysetops.py", line 277, in _unique1d
ar.sort()
TypeError: '<' not supported between instances of 'float' and 'str'
如果没有丢失的值,它的工作方式如下。
from sklearn.preprocessing import LabelBinarizer
import numpy as np
import pandas as pd
s = ['a','b','c','b','a']
df = pd.DataFrame(s, columns=["state"])
df_binarized = lb.fit_transform(df['state'])
df_binarized
Out[46]:
array([[1, 0, 0],
[0, 1, 0],
[0, 0, 1],
[0, 1, 0],
[1, 0, 0]])