我试图证明一个确定是否大小n
序列是0,1,...,n-1
的排列。我设法证明,每当该方法返回true
时,序列确实是一个有效的排列。尽管如此,证明相反的情况要困难得多(对我来说(。我认为我有正确的循环不变量和触发器,但 Dafny 触发了一个我无法理解的断言错误。这是永久链接,这是完整性的代码:
method perm_imperative(s: seq<int>) returns (status : bool)
requires |s| > 0
ensures (status == true ) ==> (forall i :: 0 <= i < |s| ==> 0 <= s[i] < |s|)
ensures (status == true ) ==> (forall i, j :: 0 <= i < j < |s| ==> (s[i] != s[j]))
ensures (status == false) ==> (exists i, j :: 0 <= i <= j < |s| && (
(s[i] < 0 ) ||
(s[i] >= |s| ) ||
(s[i] == s[j] && (i != j))))
{
var i := 0;
var used := new int[|s|];
while (i < |s|)
invariant 0 <= i <= |s|
invariant forall k :: 0 <= k < i ==> used[k] == -1;
{
used[i] := -1;
i := i + 1;
}
assert (forall k :: 0 <= k < |s| ==> used[k] == -1);
i := 0;
while (i < |s|)
invariant 0 <= i <= |s|
invariant forall k :: 0 <= k < i ==> 0 <= s[k] < |s|
invariant forall k :: 0 <= k < i ==> 0 <= used[s[k]] < i
invariant forall k, m :: 0 <= k < m < i ==> s[k] != s[m]
invariant forall k :: 0 <= k < i ==> used[s[k]] == k
invariant forall k :: 0 <= k < i ==> s[used[s[k]]] == s[k]
invariant forall k, m :: 0 <= k < m < i ==> used[s[k]] != used[s[m]]
invariant forall k :: 0 <= k < |s| ==> (0 <= used[k] < i) || (used[k] == -1)
{
if (s[i] < 0)
{
// assert (s[i] < 0);
return false;
}
else if (s[i] >= |s|)
{
// assert (s[i] >= |s|);
return false;
}
else if (used[s[i]] != -1)
{
assert (0 <= s[i] < |s|);
assert (0 <= used[s[i]] < i );
//////////////////
// //
// ASSERT ERROR //
// | //
// V //
//////////////////
assert (s[used[s[i]]] == s[i]);
return false;
}
assert (used[s[i]] == -1);
used[s[i]] := i;
i := i + 1;
}
return true;
}
如果添加以下循环不变量,则证明通过:
invariant forall n | 0 <= n < |s| :: used[n] != -1 ==> exists k | 0 <= k < i :: s[k] == n
这基本上表明used
正确记录了在以前的迭代中s
中看到的所有数字。
如果添加此循环不变量,则可以删除前面的四个循环不变量,以及 while 循环主体中的所有断言:
method perm_imperative(s: seq<int>) returns (status : bool)
requires |s| > 0
ensures (status == true ) ==> (forall i :: 0 <= i < |s| ==> 0 <= s[i] < |s|)
ensures (status == true ) ==> (forall i, j :: 0 <= i < j < |s| ==> (s[i] != s[j]))
ensures (status == false) ==> (exists i, j :: 0 <= i <= j < |s| && (
(s[i] < 0 ) ||
(s[i] >= |s| ) ||
(s[i] == s[j] && (i != j))))
{
var i := 0;
var used := new int[|s|];
while (i < |s|)
invariant 0 <= i <= |s|
invariant forall k :: 0 <= k < i ==> used[k] == -1;
{
used[i] := -1;
i := i + 1;
}
assert (forall k :: 0 <= k < |s| ==> used[k] == -1);
i := 0;
while (i < |s|)
invariant 0 <= i <= |s|
invariant forall k :: 0 <= k < i ==> 0 <= s[k] < |s|
invariant forall k :: 0 <= k < i ==> 0 <= used[s[k]] < i
invariant forall k, m :: 0 <= k < m < i ==> s[k] != s[m]
// invariant forall k :: 0 <= k < i ==> used[s[k]] == k
// invariant forall k :: 0 <= k < i ==> s[used[s[k]]] == s[k]
// invariant forall k, m :: 0 <= k < m < i ==> used[s[k]] != used[s[m]]
// invariant forall k :: 0 <= k < |s| ==> (0 <= used[k] < i) || (used[k] == -1)
invariant forall n | 0 <= n < |s| :: used[n] != -1 ==> exists k | 0 <= k < i :: s[k] == n
{
if (s[i] < 0)
{
// assert (s[i] < 0);
return false;
}
else if (s[i] >= |s|)
{
// assert (s[i] >= |s|);
return false;
}
else if (used[s[i]] != -1)
{
// assert (0 <= s[i] < |s|);
// assert (0 <= used[s[i]] < i );
// assert (s[used[s[i]]] == s[i]);
return false;
}
// assert (used[s[i]] == -1);
used[s[i]] := i;
i := i + 1;
}
return true;
}