r语言 - 使用 sqldf 包创建时间间隔



这是我的数据框的样子。

我想创建 15 分钟或 30 分钟的时间间隔,并为该时间间隔中的所有时间戳提供 No_Words 的总和。我需要这个来绘制每个时间间隔的平均单词数。

我应该怎么做?

另外,我真的很想知道使用sqldf包是否有可能的解决方案。

               Time                 No_Words
1   2013-11-17 13:37:00                    6    
2   2013-11-17 13:37:00                   16    
3   2013-11-17 13:37:00                   18    
4   2013-11-17 13:37:00                   12    
5   2013-11-17 14:03:00                    5    
6   2013-11-17 14:03:00                   20    
7   2013-11-17 14:04:00                    4    
8   2013-11-17 17:21:00                   39    
9   2013-11-17 22:48:00                   19    
10  2013-11-17 22:48:00                   12    

sqldf 下面是一个 sqldf 解决方案,其中输入数据框DF

library(sqldf)
min15 <- 15 * 60 # in seconds
ans <- fn$sqldf("select
       t.Time - t.Time % $min15 as Time, 
       sum(t.No_Words) as No_Words
    from DF t 
    group by Time")
plot(No_Words ~ Time, ans, type = "o")

给:

> ans
                 Time No_Words
1 2013-11-17 13:30:00       52
2 2013-11-17 14:00:00       29
3 2013-11-17 17:15:00       39
4 2013-11-17 22:45:00       31

使用密集网格 如果需要密集网格,那么我们将需要一个网格数据框,G ,我们与前面的ans连接(请注意,sqldf 拉入了 chron 包,因此我们使用它的 trunc 函数):

# create grid G
rng <- range(as.POSIXct(trunc(as.chron(DF$Time), 15 / (24 * 60))))
G <- data.frame(Time = seq(rng[1], rng[2], by = min15))
ans2 <- sqldf("select Time, coalesce(No_Words, 0) as No_Words 
         from (select * from G left join ans using(Time))")
plot(No_Words ~ Time, ans2, type = "o")

ans2的前几行是:

> head(ans2)
                 Time No_Words
1 2013-11-17 13:30:00       52
2 2013-11-17 13:45:00        0
3 2013-11-17 14:00:00       29
4 2013-11-17 14:15:00        0
5 2013-11-17 14:30:00        0
6 2013-11-17 14:45:00        0

动物园我们还展示了动物园解决方案:

library(zoo)
library(chron)
FUN <- function(x) as.POSIXct(trunc(as.chron(x), 15 / (24 * 60)))
z <- read.zoo(DF, FUN = FUN, aggregate = sum)
plot(z)

这给出了z

> z
2013-11-17 13:30:00 2013-11-17 14:00:00 2013-11-17 17:15:00 2013-11-17 22:45:00 
             52                  29                  39                  31 

注意:我们使用了这些数据,特别是Time属于"POSIXct"类:

Lines<- " Time            No_Words
1   2013-11-17 13:37:00                    6    
2   2013-11-17 13:37:00                   16    
3   2013-11-17 13:37:00                   18    
4   2013-11-17 13:37:00                   12    
5   2013-11-17 14:03:00                    5    
6   2013-11-17 14:03:00                   20    
7   2013-11-17 14:04:00                    4    
8   2013-11-17 17:21:00                   39    
9   2013-11-17 22:48:00                   19    
10  2013-11-17 22:48:00                   12   
"
raw <- read.table(text = Lines, skip = 1)
DF <- data.frame(Time = as.POSIXct(paste(raw$V2, raw$V3)), No_Words = raw$V4)
# generate example data, 30 min intervals
set.seed(1)
dateseq <- seq(as.POSIXct("2013-11-17"), as.POSIXct("2013-11-18"), by="min")
df <- data.frame(Time=dateseq[sample(1:length(dateseq), 500)],
                 No_Words=sample(1:100, 500, replace=T))
groups <- cut.POSIXt(df$Time, breaks="30 min")

使用sqldf的困难方法:

library(sqldf)
df$groups <- groups
agg <- sqldf("select groups, avg(No_Words) from df group by groups", row.names=T)
row.names(agg) <- agg[,1]
agg <- as.matrix(agg)
class(agg) <- "numeric"
par(mar=c(2,10,0,0)); barplot(agg[,2], horiz=TRUE, las=1)

使用例如 tapply

agg <- tapply(df$No_Words, list(groups), mean)
par(mar=c(2,10,0,0)); barplot(agg, horiz=TRUE, las=1)

这个答案不是sqldf,而是基本的R函数aggregatecut

## If your "Time" column is not an actual time object, 
##    convert it to one before proceeding.
mydf$Time <- as.POSIXct(mydf$Time)

cut可以创建时间箱。我们将使用它来进行聚合。您可以使用formula表示法,但我使用了list方法,以便轻松指定生成的列名:

## Aggregate data in 30 minute chunks
aggregate(list(No_Words = mydf$No_Words), 
          list(Time = cut(mydf$Time, "30 min")), FUN = mean)
#                  Time No_Words
# 1 2013-11-17 13:37:00 11.57143
# 2 2013-11-17 17:07:00 39.00000
# 3 2013-11-17 22:37:00 15.50000
## Aggregate data into 15 minute chunks
aggregate(list(No_Words = mydf$No_Words), 
          list(Time = cut(mydf$Time, "15 min")), FUN = mean)
#                  Time  No_Words
# 1 2013-11-17 13:37:00 13.000000
# 2 2013-11-17 13:52:00  9.666667
# 3 2013-11-17 17:07:00 39.000000
# 4 2013-11-17 22:37:00 15.500000

相关内容

  • 没有找到相关文章

最新更新