我正在寻找一种以成对方式计算点之间的分离距离,并将每个点的结果存储在随附的嵌套数据框架中。
例如,我有此数据框架(来自地图包),其中包含有关美国城市(包括其物理位置)的信息。我丢弃了其余信息,并将坐标嵌套在嵌套的数据框架中。我打算使用geosphere
软件包中的distHaversine()
来计算这些距离。
library(tidyverse)
df <- maps::us.cities %>%
slice(1:20) %>%
group_by(name) %>%
nest(long, lat, .key = coords)
name coords
<chr> <list>
1 Abilene TX <tibble [1 x 2]>
2 Akron OH <tibble [1 x 2]>
3 Alameda CA <tibble [1 x 2]>
4 Albany GA <tibble [1 x 2]>
5 Albany NY <tibble [1 x 2]>
...(With 15 more rows)
我研究了使用函数的地图家族,加上突变的功能,但我遇到了艰难的时期。所需结果的形式如下:
name coords sep_dist
<chr> <list> <list>
1 Abilene TX <tibble [1 x 2]> <tibble [19 x 2]>
2 Akron OH <tibble [1 x 2]> <tibble [19 x 2]>
3 Alameda CA <tibble [1 x 2]> <tibble [19 x 2]>
4 Albany GA <tibble [1 x 2]> <tibble [19 x 2]>
5 Albany NY <tibble [1 x 2]> <tibble [19 x 2]>
...(With 15 more rows)
用sep_dist tibbles看着这样的东西:
location distance
<chr> <dbl>
1 Akron OH 1003
2 Alameda CA 428
3 Albany GA 3218
4 Albany NY 3627
5 Albany OR 97
...(With 14 more rows) -distances completely made up
位置是要与名称进行比较的点(在这种情况下为Abilene)。
geosphere
提供了将全能距离与distm
可重复的数据
set.seed(1)
df <- data.frame(name=letters[1:4],
lon=runif(4)*10,
lat=runif(4)*10)
distm
library(geosphere)
ans <- as.data.frame(distm(df[,2:3], df[,2:3], fun=distHaversine))
# a b c d
# 1 0.0 784506.1 894320.6 877440.5
# 2 784506.1 0.0 226504.3 647666.7
# 3 894320.6 226504.3 0.0 486290.8
# 4 877440.5 647666.7 486290.8 0.0
整理所需格式
colnames(ans) <- df$name
library(dplyr)
library(tidyr)
desired <- ans %>%
gather(pos1, distance) %>%
mutate(pos2 = rep(df$name, nrow(df))) %>%
filter(pos1!=pos2) %>%
select(pos1, pos2, distance)
# pos1 pos2 distance
# 1 a b 784506.1
# 2 a c 894320.6
# 3 a d 877440.5
# 4 b a 784506.1
# 5 b c 226504.3
# 6 b d 647666.7
# 7 c a 894320.6
# 8 c b 226504.3
# 9 c d 486290.8
# 10 d a 877440.5
# 11 d b 647666.7
# 12 d c 486290.8
我们可以通过位置名称和坐标的所有组合扩展一个"网格",但以相同的位置名称删除组合。之后,使用map2_dbl
应用distHaversine
功能。
library(tidyverse)
library(geosphere)
df2 <- df %>%
# Create the grid
mutate(name1 = name) %>%
select(starts_with("name")) %>%
complete(name, name1) %>%
filter(name != name1) %>%
left_join(df, by = "name") %>%
left_join(df, by = c("name1" = "name")) %>%
# Grid completed. Calcualte the distance by distHaversine
mutate(distance = map2_dbl(coords.x, coords.y, distHaversine))
df2
# A tibble: 380 x 5
name name1 coords.x coords.y distance
<chr> <chr> <list> <list> <dbl>
1 Abilene TX Akron OH <tibble [1 x 2]> <tibble [1 x 2]> 1881904.4
2 Abilene TX Alameda CA <tibble [1 x 2]> <tibble [1 x 2]> 2128576.9
3 Abilene TX Albany GA <tibble [1 x 2]> <tibble [1 x 2]> 1470577.2
4 Abilene TX Albany NY <tibble [1 x 2]> <tibble [1 x 2]> 2542025.1
5 Abilene TX Albany OR <tibble [1 x 2]> <tibble [1 x 2]> 2429367.3
6 Abilene TX Albuquerque NM <tibble [1 x 2]> <tibble [1 x 2]> 702287.5
7 Abilene TX Alexandria LA <tibble [1 x 2]> <tibble [1 x 2]> 700093.2
8 Abilene TX Alexandria VA <tibble [1 x 2]> <tibble [1 x 2]> 2161594.6
9 Abilene TX Alhambra CA <tibble [1 x 2]> <tibble [1 x 2]> 1718967.5
10 Abilene TX Aliso Viejo CA <tibble [1 x 2]> <tibble [1 x 2]> 1681868.8
# ... with 370 more rows
要创建最终输出,我们可以基于名称和nest
group_by
和所有其他所需的列。
df3 <- df2 %>%
select(-starts_with("coord")) %>%
group_by(name) %>%
nest()
df3
# A tibble: 20 x 2
name data
<chr> <list>
1 Abilene TX <tibble [19 x 2]>
2 Akron OH <tibble [19 x 2]>
3 Alameda CA <tibble [19 x 2]>
4 Albany GA <tibble [19 x 2]>
5 Albany NY <tibble [19 x 2]>
6 Albany OR <tibble [19 x 2]>
7 Albuquerque NM <tibble [19 x 2]>
8 Alexandria LA <tibble [19 x 2]>
9 Alexandria VA <tibble [19 x 2]>
10 Alhambra CA <tibble [19 x 2]>
11 Aliso Viejo CA <tibble [19 x 2]>
12 Allen TX <tibble [19 x 2]>
13 Allentown PA <tibble [19 x 2]>
14 Aloha OR <tibble [19 x 2]>
15 Altadena CA <tibble [19 x 2]>
16 Altamonte Springs FL <tibble [19 x 2]>
17 Altoona PA <tibble [19 x 2]>
18 Amarillo TX <tibble [19 x 2]>
19 Ames IA <tibble [19 x 2]>
20 Anaheim CA <tibble [19 x 2]>
现在data
中的每个数据框架看起来像这样。
df3$data[[1]]
# A tibble: 19 x 2
name1 distance
<chr> <dbl>
1 Akron OH 1881904.4
2 Alameda CA 2128576.9
3 Albany GA 1470577.2
4 Albany NY 2542025.1
5 Albany OR 2429367.3
6 Albuquerque NM 702287.5
7 Alexandria LA 700093.2
8 Alexandria VA 2161594.6
9 Alhambra CA 1718967.5
10 Aliso Viejo CA 1681868.8
11 Allen TX 296560.4
12 Allentown PA 2342363.5
13 Aloha OR 2457938.8
14 Altadena CA 1719207.6
15 Altamonte Springs FL 1805480.9
16 Altoona PA 2102993.0
17 Amarillo TX 361520.0
18 Ames IA 1194234.7
19 Anaheim CA 1694698.9