证明了Isabelle中一个算法对分区列表的正确性



我试图证明一种算法的正确性,该算法将整数列表拆分为线性时间内相等和的子列表。在这里你可以看到我选择的算法

我想得到一些关于的反馈

  1. 我为分裂函数定义的便利性。

  2. 在我的情况下使用的"归纳"假设。

请记住,到目前为止,我只处理过应用脚本,而没有处理过Isar证明。

以下是算法的初步实现和正确性定义:

definition
"ex_balanced_sum xs = (∃ ys zs. sum_list ys = sum_list zs ∧ 
xs = ys @ zs ∧ ys ≠ [] ∧ zs ≠ [])"

fun check_list :: "int list ⇒ int ⇒ int ⇒ bool" where
"check_list [] n acc = False" |
"check_list (x#xs) n acc = (if n = acc then True else (check_list xs (n-x) (acc+x)))"
fun linear_split :: "int list ⇒ bool" where
"linear_split [] = False" |
"linear_split [x] = False" |
"linear_split (x # xs) = check_list xs (sum_list xs) x" 

要证明的定理如下:

lemma linear_correct: "linear_split xs ⟷ ex_balanced_sum xs"

例如,如果我将第一个含义解释为:

lemma linear_correct_1: "linear_split xs ⟹ ex_balanced_sum xs"
apply(induction xs rule: linear_split.induct)

然后我得到了一个我认为不合适的子目标列表:

  1. linear_split[]⟹ex_balanced_sum[]
  2. ⋀x。linear_split[x]⟹ex_balanced_sum[x]
  3. ⋀x v va.lineral_split(x#v#va(⟹ex_balanced_sum(x#v#va(

特别是,这些子目标没有归纳假设!(我说得对吗?(。我试图通过只写apply(induction xs)来进行不同的归纳,但后来的目标看起来是:

  1. linear_split[]⟹ex_balanced_sum[]
  2. ⋀a xs。(linear_split xs⟹ex_balanced_sum xs(⟹linear_split(a#xs(⟹ex_balanced_sum(a#xs(

这里的假设也不是归纳假设,因为它假设了一个蕴涵。

那么,定义这个函数以得到一个好的归纳假设的最佳方法是什么?

编辑(单功能版本(

fun check :: "int list ⇒ int ⇒ int ⇒ bool" where
"check [] n acc = False" |
"check [x] n acc = False" |
"check (x # y # xs) n acc = (if n-x = acc+x then True else check (y # xs) (n-x) (acc+x))"
definition "linear_split xs = check xs (sum_list xs) 0"

背景

我能够证明与问题陈述中的函数check非常相似的函数(splitl(的定理linear_correct。不幸的是,我不想尝试将证明转换为应用脚本。

下面的证据是我开始调查这个问题后想到的第一个证据。因此,可能存在更好的证明。


校样大纲

证明是基于基于列表长度的归纳。特别是,假设

splitl xs (sum_list xs) 0 ⟹ ex_balanced_sum xs

适用于长度小于CCD_ 6的所有列表。如果是l = 1,那么结果很容易显示。假设l>=2。然后该列表可以用x#v#xs的形式来表示。在这种情况下,如果可以使用splitl分割列表,则可以显示(splitl_reduce(

"splitl ((x + v)#xs) (sum_list ((x + v)#xs)) 0"(1(

"x = sum_list (v#xs)"(2(。

因此,根据(1(和(2(的情况进行举证。对于(1(,列表的长度是(x + v)#xs)l-1。因此,通过归纳假说ex_balanced_sum (x + v)#xs)。因此,通过定义ex_balanced_sum,也就是ex_balanced_sum x#v#xs。对于(2(,可以容易地看出,列表可以表示为[x]@(v#xs),并且在这种情况下,给定(2(时,它通过定义满足ex_balanced_sum的条件。

另一个方向的证明是相似的,并且基于与上面(1(和(2(相关的引理的逆:如果"splitl ((x + v)#xs) (sum_list ((x + v)#xs)) 0""x = sum_list (v#xs)",则"splitl (x#v#xs) (sum_list (x#v#xs)) 0"


theory so_ptcoaatplii
imports  Complex_Main
begin
definition
"ex_balanced_sum xs = 
(∃ ys zs. sum_list ys = sum_list zs ∧ xs = ys @ zs ∧ ys ≠ [] ∧ zs ≠ [])"
fun splitl :: "int list ⇒ int ⇒ int ⇒ bool" where
"splitl [] s1 s2 = False" |
"splitl [x] s1 s2 = False" |
"splitl (x # xs) s1 s2 = ((s1 - x = s2 + x) ∨ splitl xs (s1 - x) (s2 + x))"
lemma splitl_reduce:
assumes "splitl (x#v#xs) (sum_list (x#v#xs)) 0" 
shows "splitl ((x + v)#xs) (sum_list ((x + v)#xs)) 0 ∨ x = sum_list (v#xs)"
proof -
from assms have prem_cases: 
"((x = sum_list (v#xs)) ∨ splitl (v#xs) (sum_list (v#xs)) x)" by auto
{
assume "splitl (v#xs) (sum_list (v#xs)) x"
then have "splitl ((x + v)#xs) (sum_list ((x + v)#xs)) 0"
proof(induction xs arbitrary: x v)
case Nil then show ?case by simp
next
case (Cons a xs) then show ?case by simp
qed
} 
with prem_cases show ?thesis by auto
qed
(*Sledgehammered*)
lemma splitl_expand:
assumes "splitl ((x + v)#xs) (sum_list ((x + v)#xs)) 0 ∨ x = sum_list (v#xs)"
shows "splitl (x#v#xs) (sum_list (x#v#xs)) 0"
by (smt assms list.inject splitl.elims(2) splitl.simps(3) sum_list.Cons)
lemma splitl_to_sum: "splitl xs (sum_list xs) 0 ⟹ ex_balanced_sum xs"
proof(induction xs rule: length_induct)
case (1 xs) show ?case
proof-
obtain x v xst where x_xst: "xs = x#v#xst" 
by (meson "1.prems" splitl.elims(2))
have main_cases:
"splitl ((x + v)#xst) (sum_list ((x + v)#xst)) 0 ∨ x = sum_list (v#xst)"
by (rule splitl_reduce, insert x_xst "1.prems", rule subst)
{
assume "splitl ((x + v)#xst) (sum_list ((x + v)#xst)) 0"
with "1.IH" x_xst have "ex_balanced_sum ((x + v)#xst)" by simp
then obtain yst zst where 
yst_zst: "(x + v)#xst = yst@zst" 
and sum_yst_eq_sum_zst: "sum_list yst = sum_list zst"
and yst_ne: "yst ≠ []" 
and zst_ne: "zst ≠ []"
unfolding ex_balanced_sum_def by auto
then obtain ystt where ystt: "yst = (x + v)#ystt" 
by (metis append_eq_Cons_conv)
with sum_yst_eq_sum_zst have "sum_list (x#v#ystt) = sum_list zst" by simp
moreover have "xs = (x#v#ystt)@zst" using x_xst yst_zst ystt by auto
moreover have "(x#v#ystt) ≠ []" by simp
moreover with zst_ne have "zst ≠ []" by simp
ultimately have "ex_balanced_sum xs" unfolding ex_balanced_sum_def by blast
}
note prem = this
{
assume "x = sum_list (v#xst)"
then have "sum_list [x] = sum_list (v#xst)" by auto
moreover with x_xst have "xs = [x] @ (v#xst)" by auto
ultimately have "ex_balanced_sum xs" using ex_balanced_sum_def by blast
}
with prem main_cases show ?thesis by blast
qed
qed

lemma sum_to_splitl: "ex_balanced_sum xs ⟹ splitl xs (sum_list xs) 0"
proof(induction xs rule: length_induct)
case (1 xs) show ?case
proof -
from "1.prems" ex_balanced_sum_def obtain ys zs where 
ys_zs: "xs = ys@zs"
and sum_ys_eq_sum_zs: "sum_list ys = sum_list zs"
and ys_ne: "ys ≠ []"
and zs_ne: "zs ≠ []"
by blast
have prem_cases: "∃y v yst. ys = (y#v#yst) ∨ (∃y. ys = [y])"
by (metis remdups_adj.cases ys_ne)
{
assume "∃y. ys = [y]"
then have "splitl xs (sum_list xs) 0"
using splitl.elims(3) sum_ys_eq_sum_zs ys_zs zs_ne by fastforce
}
note prem = this
{
assume "∃y v yst. ys = (y#v#yst)"
then obtain y v yst where y_v_yst: "ys = (y#v#yst)" by auto 
then have 
"sum_list ((y + v)#yst) = sum_list zs ∧ ((y + v)#yst) ≠ [] ∧ zs ≠ []"
using sum_ys_eq_sum_zs zs_ne by auto
then have ebs_ypv: "ex_balanced_sum (((y + v)#yst)@zs)"
using ex_balanced_sum_def by blast
have l_ypv: "length (((y + v)#yst)@zs) < length xs" 
by (simp add: y_v_yst ys_zs)
from l_ypv ebs_ypv have 
"splitl (((y + v)#yst)@zs) (sum_list (((y + v)#yst)@zs)) 0"
by (rule "1.IH"[THEN spec, rule_format])    
with splitl_expand have splitl_ys_exp: 
"splitl ((y#v#yst)@zs) (sum_list ((y#v#yst)@zs)) 0"
by (metis Cons_eq_appendI)
from ys_zs have "splitl xs (sum_list xs) 0" 
by (rule ssubst, insert y_v_yst splitl_ys_exp, simp)
}
with prem prem_cases show ?thesis by auto
qed  
qed
lemma linear_correct: "ex_balanced_sum xs ⟷ splitl xs (sum_list xs) 0"
using splitl_to_sum sum_to_splitl by auto
end

最新更新