矩阵中的字符串操作:一个维度问题



我试图在R.中定义一个操作字符串矩阵的函数

{+,*}矩阵乘法

维数n的两个矩阵AB的{+,*}-乘积是由以下元素定义的矩阵CCi,j=Sumk=1,。。。,nAi,k*Bk,j

例如,考虑矩阵M <- matrix(c(a,b,0,0,c,d,0,0,e),3,3)。那么M乘以M就是CCD_ 2。

{c(,(,paste0(,(}矩阵乘法

我想实现的这个运算的规则与前面所说的乘法相同,基本突变是总和应该是串联,乘积应该是粘贴。换句话说,在上一个公式中,我们找到了a+b,现在输出应该是"c(a,b(",当我们找到a*b时,现在我们应该将其读取为paste0(a,b)

一些常见的性质必须重新描述,即分配性质和0元素性质。因此,如果a <- c("q",0,"w")b <- c("e"),那么a*b <- c("qe",0,"we")(我们应该自由地忘记0元素,因为它不会影响计算

此外,我们将等维矩阵相乘,因此每个元素Ci,j=Sumk=1,。。。,nAi,k*Bk,j现在读取为c("A[i,1]B[1,j]",...,"A[i,n]B[n,j]")

为了语义,让我们考虑B总是一个简单的矩阵,这意味着它的每个元素都是原子字符串,而不是字符串的串联(泛化是后续步骤(。

让我们举一个例子。设A <- matrix(c("a","b",0,0,"c","d",0,0,"e"),3,3),然后设mult(A,A) = matrix(c("aa",c("ab","bc"),"bd",0,"cc",c("cd","de"),0,0,"ee"),3,3)mult(mult(A,A),A) = matrix(c("aaa",c("aab","abc","bcc"),c("abd","bcd","bde"),0,"ccc",c("ccd","cde","dee"),0,0,"eee"),3,3)

部分(不起作用(实施

将一对nxn矩阵MN视为输入,无论是0还是字符串数组c(s1s2,…(作为i、j元素。作为输出,我希望有一个矩阵MN=MxN,其中乘法的定义与符号乘法类似:

MN i,如果M>i,则j=0N。,j为0
MNi,j=粘贴(M<1sub>i、.、N<2sub>、j(否则(使用paste()分布式特性(

我给出了一个(错误的,没有正确检查零(将基本行/列粘贴函数定义为

MijPaste <- function(Row,Col){
  if(Col[1]=="0"){
    Mij <- 0
  } else if(Row[1]=="0"){
      Mij <- 0
    } else
      Mij <- paste(Row,Col,sep="")
  return(Mij)
}

我还没能从这一步到乘法函数的正确定义,因为我想插入矩阵中的元素Mij的维度不对。因此我得到了一个number of items to replace is not a multiple of replacement length错误。我目前的实现是:

# define the dimension of the matrix, here for example 3
dim <- 3
# define the Multiplication function as an iteration of the MijPaste function
Mult <- function(M1,M2){
    #allocate a matrix of dimension nxn
    M <-  matrix(0,dim,dim)
    #for each element i,j define it as the MijPaste of row i column j
      for(i in 1:dim){
      for(j in 1:dim){
        stringi <- M1[i,]
        stringj <- M2[,j]
        M[i,j] <- MijPaste(stringi,stringj)
      }
    }
  return(M)
}

代码不起作用。我可能会将矩阵更改为多维数组,但我希望输出可以用作进一步乘法的矩阵(例如定义(MxN(xC(。

我该怎么办?

谢谢!

附言:你可以使用一个简单的矩阵测试代码

Matr <- matrix(c("11","12","13","21","22","23","31","32","33"),dim,dim)

和运行

Mult(Matr,Matr)

如果手动设置维度,则可以直接将paste与矩阵一起使用:

MN <- matrix(paste(M, N, sep=""), nrow=nrow(M), ncol=ncol(M))

现在过滤零并替换:

MN[(M==0) | (N==0)] <- 0

编辑:上面显示的逐点产品不是OP想要的。

正如我在评论中所说,您可以在第一个函数中添加collapse=""来修复您的函数。我得到以下结果:

> M <- matrix(LETTERS[1:9],3,3)
> N <- matrix(LETTERS[10:18],3,3)
> M
     [,1] [,2] [,3]
[1,] "A"  "D"  "G" 
[2,] "B"  "E"  "H" 
[3,] "C"  "F"  "I" 
> N
     [,1] [,2] [,3]
[1,] "J"  "M"  "P" 
[2,] "K"  "N"  "Q" 
[3,] "L"  "O"  "R" 
> Mult(M,N)
     [,1]     [,2]     [,3]    
[1,] "AJDKGL" "AMDNGO" "APDQGR"
[2,] "BJEKHL" "BMENHO" "BPEQHR"
[3,] "CJFKIL" "CMFNIO" "CPFQIR"

正如您所看到的,您的函数在粘贴之前匹配矩阵MN中的元素。

如果你想把每个矩阵的元素放在一起,你可以使用这两行:

> coll <- function(x)paste(x,collapse="")
> outer(apply(M,1,coll),apply(N,2,coll),paste0)
     [,1]     [,2]     [,3]    
[1,] "ADGJKL" "ADGMNO" "ADGPQR"
[2,] "BEHJKL" "BEHMNO" "BEHPQR"
[3,] "CFIJKL" "CFIMNO" "CFIPQR"

当然,您必须手动在此之后插入零。

pmat <- function(m1, m2) matrix(
          ifelse(m1=="0"|m2=="0", "0", paste0(m1,m2) ) ,
                            dim(m1)[1], dim(m1)[2] )

> pmat(Matr, Matr)
     [,1]   [,2]   [,3]  
[1,] "1111" "2121" "3131"
[2,] "1212" "2222" "3232"
[3,] "1313" "2323" "3333"

我不知道你是否准备好进行维度乘法。如果每个索引需要N个元素,那么您需要kronecker函数,它需要一个稍微不同的函数:

插入:

也许你应该发布一个更好的测试用例?然后你可以更明确地表达你想要什么。这显示了应用M <- matrix(c(a^2,a*b+b*c,b*d,0,c^2,c*d+d*e,0,0,e^2),3,3)0的pmat如何重新排列为数组,将MN[1,1]作为第一个矩阵的第一列:

 M <- matrix(c("a1","b1","c1","0"),2,2)
 N <- matrix(c("c2","d2","e2","f2"),2,2)
 MN <- array( kmat,c( 2,2,4))
 MN[ , 1,1]
#[1] "a1c2" "a1d2"

> pmat <- function(m1, m2) matrix( ifelse(m1=="0"|m2=="0", "0", paste0(m1,m2) )  )
> kronecker(Matr, Matr, pmat)
      [,1]   [,2]   [,3]   [,4]   [,5]   [,6]   [,7]   [,8]   [,9]  
 [1,] "1111" "1121" "1131" "2111" "2121" "2131" "3111" "3121" "3131"
 [2,] "1112" "1122" "1132" "2112" "2122" "2132" "3112" "3122" "3132"
 [3,] "1113" "1123" "1133" "2113" "2123" "2133" "3113" "3123" "3133"
 [4,] "1211" "1221" "1231" "2211" "2221" "2231" "3211" "3221" "3231"
 [5,] "1212" "1222" "1232" "2212" "2222" "2232" "3212" "3222" "3232"
 [6,] "1213" "1223" "1233" "2213" "2223" "2233" "3213" "3223" "3233"
 [7,] "1311" "1321" "1331" "2311" "2321" "2331" "3311" "3321" "3331"
 [8,] "1312" "1322" "1332" "2312" "2322" "2332" "3312" "3322" "3332"
 [9,] "1313" "1323" "1333" "2313" "2323" "2333" "3313" "3323" "3333"

相关内容

  • 没有找到相关文章

最新更新