Hadoop Mapreduce错误的结果没有错误-列计数检查



我尝试在CentOS中构建一个Hadoop Mapreduce程序来检查输入文件上的列。文件只包含文本,不包含XML,看起来像这样:

Apple|Orange|Grape|Apple
Banana|Apple|Melon
Melon|Orange
Apple|Banana|Grape
Melon|Orange

用分隔符'|'分隔列。我的程序旨在检查每行上的列数By附加每一列的第一个字符,如

苹果|橙|葡萄|苹果-> AOGA

键建立后,程序将计算每个键的长度以检查每行中有多少列。实际上,我将使用这些键来区分列数超过指定限制的行。输出数据格式为:

(键、Keys.length Rowcount)

我的预期结果是:

AOGA 4 1

BAM 3 1

ABG 31 1

MO 2 2

这是我的源代码: Columncheck.java

package com.mapreduce;
import java.io.IOException;
import java.util.*;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.conf.*;
import org.apache.hadoop.io.*;
import org.apache.hadoop.mapreduce.*;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class Columncheck {
    public static void main(String[] args) throws Exception {
        Configuration conf = new Configuration();
        Job job = new Job(conf, "Columncheck");
        //Set class which run from jar file
        job.setJarByClass(Columncheck.class);
        //Set Key class datatype 
        job.setOutputKeyClass(Text.class);
        //Set summary output datatype
        job.setOutputValueClass(CountTuple.class);
        //Set Mapper and Reducer class
        job.setMapperClass(Map.class);
        job.setCombinerClass(Reduce.class);
        job.setReducerClass(Reduce.class);
        //Set input-output data format
//      job.setInputFormatClass(TextInputFormat.class);
//      job.setOutputFormatClass(TextOutputFormat.class);
        //Declare Input and Output Path from Arguments (from Terminal)
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        System.exit(job.waitForCompletion(true)?0:1);
     }
    // Mapper<KEYIN,VALUEIN,KEYOUT,VALUEOUT>
     public static class Map extends Mapper<Object, Text, Text, CountTuple> {
        private Text word = new Text(); //Value
        private CountTuple outTuple = new CountTuple();    
        public void map(Object key, Text value, Context context) 
                throws IOException, InterruptedException {
            String line = value.toString(); //A|B|C
            StringTokenizer tokenizer = new StringTokenizer(line);
            ArrayList<String> stringList = new ArrayList<String>(); 
            ArrayList<String> stringList2 = new ArrayList<String>();
            while (tokenizer.hasMoreTokens()) { 
                stringList.add(tokenizer.nextToken()); 
            } 
            for(String item: stringList){ // item format => A|B|C
                StringTokenizer tokenizer2 = new StringTokenizer(item,"|");
                String tokens = "";
                 while (tokenizer2.hasMoreTokens()) { 
                     tokens = tokens + tokenizer2.nextToken().charAt(0);
                 }
                 stringList2.add(tokens); //Output : ABC
            }
            for(String item2: stringList2){
                outTuple.setLength(item2.length());
                outTuple.setCount(1);
                word.set(item2); 
                context.write(word, outTuple); 
                //System.out.println(outTuple.getLength()+ " " + outTuple.getCount());
            }
            //End of mapping
        }
     } 
     // Reducer<KEYIN,VALUEIN,KEYOUT,VALUEOUT> *********************
     public static class Reduce extends Reducer<Text, CountTuple, Text, CountTuple> {
        private CountTuple result = new CountTuple();
        //Automatic shuffle keys 
        // This method is called at once for each key
        public void reduce(Text key, Iterable<CountTuple> values, Context context) 
          throws IOException, InterruptedException {
            result.setLength(0);
            result.setCount(0);
            int sum = 0;
            int wordlength = 0;
            for (CountTuple val : values) {
                sum += val.getCount();
                wordlength = val.getLength();
            }
            result.setLength(wordlength);
            result.setCount(sum);
            context.write(key, result);
        }
     }
}

和我的类:CountTuple.java

package com.mapreduce;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import org.apache.hadoop.io.Writable;
public class CountTuple implements Writable{
    private Integer wlength;
    private long count;
    public CountTuple() {
        this.wlength = 0;
        this.count = 0;
    }
    public Integer getLength() {
        return wlength;
    }
    public void setLength(Integer i) {
        this.wlength = i;
    }
    public long getCount() {
        return count;
    }
    public void setCount(long count) {
        this.count = count;
    }
    public void readFields(DataInput in) throws IOException {
        wlength = in.readInt();
        count = in.readLong();
    }
    public void write(DataOutput out) throws IOException {
        out.writeInt(wlength);
        out.writeLong(count);
    }
}

这是来自控制台的消息:

-bash-4.1$ hadoop jar Columncheck.jar com.mapreduce.Columncheck /tmp/gphdtmp/colchkinput /tmp/gphdtmp/colchkoutput
14/08/19 19:00:23 INFO service.AbstractService: Service:org.apache.hadoop.yarn.client.YarnClientImpl is inited.
14/08/19 19:00:23 INFO service.AbstractService: Service:org.apache.hadoop.yarn.client.YarnClientImpl is started.
14/08/19 19:00:24 WARN mapreduce.JobSubmitter: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
14/08/19 19:00:24 INFO input.FileInputFormat: Total input paths to process : 1
14/08/19 19:00:25 INFO mapreduce.JobSubmitter: number of splits:1
In DefaultPathResolver.java. Path = hdfs://hdname01:8020/tmp/gphdtmp/colchkoutput
14/08/19 19:00:25 WARN conf.Configuration: mapred.jar is deprecated. Instead, use mapreduce.job.jar
14/08/19 19:00:25 WARN conf.Configuration: mapred.output.value.class is deprecated. Instead, use mapreduce.job.output.value.class
14/08/19 19:00:25 WARN conf.Configuration: mapreduce.combine.class is deprecated. Instead, use mapreduce.job.combine.class
14/08/19 19:00:25 WARN conf.Configuration: mapreduce.map.class is deprecated. Instead, use mapreduce.job.map.class
14/08/19 19:00:25 WARN conf.Configuration: mapred.job.name is deprecated. Instead, use mapreduce.job.name
14/08/19 19:00:25 WARN conf.Configuration: mapreduce.reduce.class is deprecated. Instead, use mapreduce.job.reduce.class
14/08/19 19:00:25 WARN conf.Configuration: mapred.input.dir is deprecated. Instead, use mapreduce.input.fileinputformat.inputdir
14/08/19 19:00:25 WARN conf.Configuration: mapred.output.dir is deprecated. Instead, use mapreduce.output.fileoutputformat.outputdir
14/08/19 19:00:25 WARN conf.Configuration: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
14/08/19 19:00:25 WARN conf.Configuration: mapred.output.key.class is deprecated. Instead, use mapreduce.job.output.key.class
14/08/19 19:00:25 WARN conf.Configuration: mapred.working.dir is deprecated. Instead, use mapreduce.job.working.dir
14/08/19 19:00:25 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1408091977394_0024
14/08/19 19:00:26 INFO client.YarnClientImpl: Submitted application application_1408091977394_0024 to ResourceManager at hdname00/10.14.233.41:8032
14/08/19 19:00:26 INFO mapreduce.Job: The url to track the job: http://hdname00-1:8088/proxy/application_1408091977394_0024/
14/08/19 19:00:26 INFO mapreduce.Job: Running job: job_1408091977394_0024
14/08/19 19:00:37 INFO mapreduce.Job: Job job_1408091977394_0024 running in uber mode : false
14/08/19 19:00:37 INFO mapreduce.Job:  map 0% reduce 0%
14/08/19 19:00:46 INFO mapreduce.Job:  map 100% reduce 0%
14/08/19 19:00:54 INFO mapreduce.Job:  map 100% reduce 100%
14/08/19 19:00:54 INFO mapreduce.Job: Job job_1408091977394_0024 completed successfully
14/08/19 19:00:55 INFO mapreduce.Job: Counters: 43
        File System Counters
                FILE: Number of bytes read=78
                FILE: Number of bytes written=175951
                FILE: Number of read operations=0
                FILE: Number of large read operations=0
                FILE: Number of write operations=0
                HDFS: Number of bytes read=207
                HDFS: Number of bytes written=152
                HDFS: Number of read operations=6
                HDFS: Number of large read operations=0
                HDFS: Number of write operations=2
        Job Counters
                Launched map tasks=1
                Launched reduce tasks=1
                Rack-local map tasks=1
                Total time spent by all maps in occupied slots (ms)=14840
                Total time spent by all reduces in occupied slots (ms)=20685
        Map-Reduce Framework
                Map input records=5
                Map output records=5
                Map output bytes=79
                Map output materialized bytes=78
                Input split bytes=115
                Combine input records=5
                Combine output records=4
                Reduce input groups=4
                Reduce shuffle bytes=78
                Reduce input records=4
                Reduce output records=4
                Spilled Records=8
                Shuffled Maps =1
                Failed Shuffles=0
                Merged Map outputs=1
                GC time elapsed (ms)=59
                CPU time spent (ms)=5030
                Physical memory (bytes) snapshot=1075609600
                Virtual memory (bytes) snapshot=6045433856
                Total committed heap usage (bytes)=2024800256
        Shuffle Errors
                BAD_ID=0
                CONNECTION=0
                IO_ERROR=0
                WRONG_LENGTH=0
                WRONG_MAP=0
                WRONG_REDUCE=0
        File Input Format Counters
                Bytes Read=92
        File Output Format Counters
                Bytes Written=152

运行源代码时没有出现错误,但是结果变成:

$ hadoop fs -cat /tmp/gphdtmp/colchkoutput/part-r-00000    
ABG     com.mapreduce.CountTuple@2cee0cd1
AOGA    com.mapreduce.CountTuple@2cee0cd1
BAM     com.mapreduce.CountTuple@2cee0cd1
MO      com.mapreduce.CountTuple@2cee0cd1
我不明白为什么结果是这样的。我试过检查了问题,但没有出现错误。请帮帮我。谢谢。

您需要在您的CountTuple中覆盖#toString方法。

例如:

@Override
public String toString() {
  return count + "";
}

相关内容

  • 没有找到相关文章

最新更新