c-对dotproduct使用pthreads时出现分段错误



我一直在尝试为pthreads制作一个点积程序,但遇到了一些困难。当我试图运行程序时,遇到了分段错误。我用c来编码。

我的程序最初使用这个代码:

a = (double*) malloc (THREAD_COUNT* SIZE *  sizeof(double));
b = (double*) malloc (THREAD_COUNT* SIZE *  sizeof(double));
for (i=0; i<SIZE*THREAD_COUNT; i++) {
  a[i]=1;
  b[i]=a[i];
  }
dot.size = SIZE;
dot.a = a;
dot.b = b;
dot.sum=0;
pthread_mutex_init(&mutexsum, NULL);
/* Create threads to perform the dotproduct  */
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

gettimeofday (&time_start, NULL);
for(i=0;i<THREAD_COUNT;i++)
  {
   pthread_create(&callThd[i], &attr, dotprod, (void *)i); 
   }
pthread_attr_destroy(&attr);
for(i=0;i<THREAD_COUNT;i++) {
  pthread_join(callThd[i], &status);
  }

然后我改变了内存分配,因为我不希望通过增加线程数来增加总和。

这是更改后的代码:

a = (double*) malloc ( SIZE *  sizeof(double));
b = (double*) malloc (SIZE *  sizeof(double));
for (i=0; i<SIZE; i++) {
  a[i]=1;
  b[i]=a[i];
  }
dot.size = SIZE;
dot.a = a;
dot.b = b;
dot.sum=0;
pthread_mutex_init(&mutexsum, NULL);
/* Create threads to perform the dotproduct  */
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);

gettimeofday (&time_start, NULL);
for(i=0;i<THREAD_COUNT;i++)
  {
   pthread_create(&callThd[i], &attr, dotprod, (void *)i);
   }
pthread_attr_destroy(&attr);
for(i=0;i<THREAD_COUNT;i++) {
  pthread_join(callThd[i], &status);
  }

这是我的全部代码:

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h> //gettimeofday()
typedef struct
 {
   double      *a;
   double      *b;
   double     sum;
   int     size;
 } DOTPROD;
/* Define globally accessible variables and a mutex */
typedef struct
{
int secs;
int microsecs;

}TIME;
//TIME * time_diff(struct timeval *, struct timeval *);

#define THREAD_COUNT 20
#define SIZE 100000
   DOTPROD dot;
   pthread_t callThd[THREAD_COUNT];
   pthread_mutex_t mutexsum;



void *dotprod(void *arg)
{
/* Define and use local variables for convenience */
   int i, start, end, reg_size ;
   long offset;
   double partsum, *x, *y;
   offset = (long)arg;
   reg_size = dot.size;
   start = offset*reg_size;
   end   = start + reg_size;
   x = dot.a;
   y= dot.b;     /*                                        
 * Perform the dot product and assign result
 * to the appropriate variable in the structure. 
 * */
   partsum = 0;
   for (i=start; i<end ; i++)
    {
      partsum += (x[i] * y[i]);
    }
/*
 * Lock a mutex prior to updating the value in the shared
 * structure, and unlock it upon updating.
 * */
   pthread_mutex_lock (&mutexsum);
   dot.sum += partsum;
   pthread_mutex_unlock (&mutexsum);
   pthread_exit((void*) 0);
}

int main (int argc, char *argv[])
{
long i;
double *a, *b;
void *status;
struct timeval time_start, time_end;
TIME*diff;
pthread_attr_t attr;
/* Assign storage and initialize values */
a = (double*) malloc ( SIZE *  sizeof(double));
b = (double*) malloc (SIZE *  sizeof(double));
for (i=0; i<SIZE; i++) {
  a[i]=1;
  b[i]=a[i];
  }
dot.size = SIZE;
dot.a = a;
dot.b = b;
dot.sum=0;
pthread_mutex_init(&mutexsum, NULL);
/* Create threads to perform the dotproduct  */
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
                                                   55,16         58%
 * Perform the dot product and assign result
 * to the appropriate variable in the structure. 
 * */
   partsum = 0;
   for (i=start; i<end ; i++)
    {
      partsum += (x[i] * y[i]);
    }
/*
 * Lock a mutex prior to updating the value in the shared
 * structure, and unlock it upon updating.
 * */
   pthread_mutex_lock (&mutexsum);
   dot.sum += partsum;
   pthread_mutex_unlock (&mutexsum);
   pthread_exit((void*) 0);
}

int main (int argc, char *argv[])
{
long i;
double *a, *b;
void *status;
struct timeval time_start, time_end;
TIME*diff;
pthread_attr_t attr;
/* Assign storage and initialize values */
a = (double*) malloc ( SIZE *  sizeof(double));
b = (double*) malloc (SIZE *  sizeof(double));
for (i=0; i<SIZE; i++) {
  a[i]=1;
  b[i]=a[i];
  }
dot.size = SIZE;
dot.a = a;
dot.b = b;
dot.sum=0;
pthread_mutex_init(&mutexsum, NULL);
/* Create threads to perform the dotproduct  */
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
                                                   55,16         58%
 * Perform the dot product and assign result
 * to the appropriate variable in the structure. 
 * */
   partsum = 0;
   for (i=start; i<end ; i++)
    {
      partsum += (x[i] * y[i]);
    }
/*
 * Lock a mutex prior to updating the value in the shared
 * structure, and unlock it upon updating.
 * */
   pthread_mutex_lock (&mutexsum);
   dot.sum += partsum;
   pthread_mutex_unlock (&mutexsum);
   pthread_exit((void*) 0);
}

int main (int argc, char *argv[])
{
long i;
double *a, *b;
void *status;
struct timeval time_start, time_end;
TIME*diff;
pthread_attr_t attr;
/* Assign storage and initialize values */
a = (double*) malloc ( SIZE *  sizeof(double));
b = (double*) malloc (SIZE *  sizeof(double));
for (i=0; i<SIZE; i++) {
  a[i]=1;
  b[i]=a[i];
  }
dot.size = SIZE;
dot.a = a;
dot.b = b;
dot.sum=0;
pthread_mutex_init(&mutexsum, NULL);
/* Create threads to perform the dotproduct  */
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
                                                   55,16         58%
 * Perform the dot product and assign result
 * to the appropriate variable in the structure. 
 * */
   partsum = 0;
   for (i=start; i<end ; i++)
    {
      partsum += (x[i] * y[i]);
    }
/*
 * Lock a mutex prior to updating the value in the shared
 * structure, and unlock it upon updating.
 * */
   pthread_mutex_lock (&mutexsum);
   dot.sum += partsum;
   pthread_mutex_unlock (&mutexsum);
   pthread_exit((void*) 0);
}

int main (int argc, char *argv[])
{
long i;
double *a, *b;
void *status;
struct timeval time_start, time_end;
TIME*diff;
pthread_attr_t attr;
/* Assign storage and initialize values */
a = (double*) malloc ( SIZE *  sizeof(double));
b = (double*) malloc (SIZE *  sizeof(double));
for (i=0; i<SIZE; i++) {
  a[i]=1;
  b[i]=a[i];
  }
dot.size = SIZE;
dot.a = a;
dot.b = b;
dot.sum=0;
pthread_mutex_init(&mutexsum, NULL);
/* Create threads to perform the dotproduct  */
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
                                                   * Perform the dot product and assign result
 * to the appropriate variable in the structure. 
 * */
   partsum = 0;
   for (i=start; i<end ; i++)
    {
      partsum += (x[i] * y[i]);
    }
/*
 * Lock a mutex prior to updating the value in the shared
 * structure, and unlock it upon updating.
 * */
   pthread_mutex_lock (&mutexsum);
   dot.sum += partsum;
   pthread_mutex_unlock (&mutexsum);
   pthread_exit((void*) 0);
}

int main (int argc, char *argv[])
{
long i;
double *a, *b;
void *status;
struct timeval time_start, time_end;
TIME*diff;
pthread_attr_t attr;
/* Assign storage and initialize values */
a = (double*) malloc ( SIZE *  sizeof(double));
b = (double*) malloc (SIZE *  sizeof(double));
for (i=0; i<SIZE; i++) {
  a[i]=1;
  b[i]=a[i];
  }
dot.size = SIZE;
dot.a = a;
dot.b = b;
dot.sum=0;
pthread_mutex_init(&mutexsum, NULL);
/* Create threads to perform the dotproduct  */
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
gettimeofday (&time_start, NULL);
for(i=0;i<THREAD_COUNT;i++)
  {
   pthread_create(&callThd[i], &attr, dotprod, (void *)i);
   }
pthread_attr_destroy(&attr);
for(i=0;i<THREAD_COUNT;i++) {
  pthread_join(callThd[i], &status);
  }
/* After joining, print out the results and cleanup */

gettimeofday (&time_end, NULL);

long long elasped = (time_end.tv_sec - time_start.tv_sec)*1000000LL + time_end.tv_usec - time_start.tv_usec;
printf ("time diff in microseconds = %6d n",elasped);
printf ("Sum =  %f n", dot.sum);
//diff = time_diff(&time_start, &time_end);
//printf("Time = %d. %5d.%6d secs. n", diff->secs, diff -> microsecs);
free (a);
free (b);
pthread_mutex_destroy(&mutexsum);
pthread_exit(NULL);
}

在初始代码中,dot.sizeSIZE是相同的,向量大小为SIZE * THREAD_COUNT。所以,如果你有4个线程,每个线程做5次乘法,那么向量大小是20。

在新代码中,SIZE现在是向量大小,您正试图在THREAD_COUNT线程之间分配工作。因此dot.size需要是SIZE / THREAD_COUNT。因此,如果SIZE是20,而THREAD_COUNT是4,则dot.size需要是20/4=5。

相关内容

  • 没有找到相关文章

最新更新