Keras 预测仅给出 1,但损失值减少



我正在尝试在 CIfar-10 数据集上使用 Keras 实现 JSCC 自动编码器。 但输出图像的值始终仅为 1。

我是 Keras 的新手,我没有找到如何解决这个问题。

model = Sequential()
model.add(Conv2D(16,(5,5),padding = 'same', strides = 2, input_shape=X_train.shape[1:]))
model.add(Activation('relu'))
model.add(Conv2D(32,(5,5),padding = 'same', strides = 2))
model.add(Activation('relu'))
model.add(Conv2D(32,(5,5),padding = 'same'))
model.add(Activation('relu'))
model.add(Conv2D(32,(5,5),padding = 'same'))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(100))
model.add(Activation('relu'))
model.add(keras.layers.GaussianNoise(0.1))
model.add(Dense(2048))
model.add(Activation('relu'))
model.add(Reshape((8,8,32)))
model.add(Conv2DTranspose(32,(5,5), padding = 'same'))
model.add(Activation('relu'))
model.add(Conv2DTranspose(32,(5,5), padding = 'same'))
model.add(Activation('relu'))
model.add(Conv2DTranspose(32,(5,5), strides = 2 ,padding = 'same'))
model.add(Activation('relu'))
model.add(Conv2DTranspose(3,(5,5), strides = 2 ,padding = 'same'))
model.add(Activation('sigmoid'))
model.compile(loss='mse', optimizer='adam')
model.fit(X_train_norm, X_train_norm,
              batch_size=128,
              epochs=20,
              validation_data=(X_test_norm, X_test_norm),
              shuffle=True)

该模型将图像压缩为长度为 100 的向量,并加起来得到高斯噪声,然后将向量上采样为原始输入。

Train on 50000 samples, validate on 10000 samples
Epoch 1/20
50000/50000 [==============================] - 7s 138us/step - loss: 0.0245 - val_loss: 0.0226
Epoch 2/20
50000/50000 [==============================] - 6s 120us/step - loss: 0.0225 - val_loss: 0.0222
Epoch 3/20
50000/50000 [==============================] - 6s 121us/step - loss: 0.0220 - val_loss: 0.0216
Epoch 4/20
50000/50000 [==============================] - 6s 121us/step - loss: 0.0214 - val_loss: 0.0211
Epoch 5/20
50000/50000 [==============================] - 6s 119us/step - loss: 0.0208 - val_loss: 0.0207
...
>>>model.predict(X_train[:32])
array([[[[1., 1., 1.],
         [1., 1., 1.],
         [1., 1., 1.],
         ...,

您在训练期间使用了规范化数据,但在预测中使用了原始数据。

而不是:

model.predict(X_train[:32])

用:

model.predict(X_train_norm[:32])

相关内容

  • 没有找到相关文章

最新更新