OpenGL 顶点缓冲区渲染不正确



我遇到了一个奇怪的问题。我正在尝试在我的Windows系统上使用OpenGL渲染一些数据。我在 opengl-tutorial.org 找到了一组为OpenGL 3.3编写的教程。由于我的笔记本电脑(我在那里做了大量的开发)只支持OpenGL 2.1,我继续下载本教程的OpenGL 2.1端口。我弄乱了它,添加功能并重构它以实现可扩展性,但注意到一些奇怪的东西。每当我使用顶点缓冲区对象渲染数据时,我都会得到一个相当不正确的数据表示形式。如下所示。http://www.majhost.com/gallery/DagonEcelstraun/Others/HelpNeeded/badrender.png但是,当我使用 glVertex3fv 等指定我的数据时,我得到了更好的结果,再次如下所示。http://www.majhost.com/gallery/DagonEcelstraun/Others/HelpNeeded/goodrender.png该问题既发生在带有Intel i3集成显卡的Windows 8.1笔记本电脑上,也发生在带有nVidia GTX 660的Windows 7台式机上,因此这不是硬件问题。有谁知道这里可能有什么问题?

加载网格数据:

const aiScene *scene = aiImportFile( sName.c_str(), 
aiProcessPreset_TargetRealtime_MaxQuality | aiProcess_FlipUVs );
const aiMesh *mesh = scene->mMeshes[0];
for( int i = 0; i < mesh->mNumVertices; i++ ) {
    meshData.push_back( mesh->mVertices[i][0] );
    meshData.push_back( mesh->mVertices[i][1] );
    meshData.push_back( mesh->mVertices[i][2] );
    meshData.push_back( mesh->mNormals[i][0] );
    meshData.push_back( mesh->mNormals[i][1] );
    meshData.push_back( mesh->mNormals[i][2] );
    meshData.push_back( mesh->mTextureCoords[0][i][0] );
    meshData.push_back( mesh->mTextureCoords[0][i][1] );
    meshData.push_back( 0 );
    meshData.push_back( mesh->mTangents[i][0] );
    meshData.push_back( mesh->mTangents[i][1] );
    meshData.push_back( mesh->mTangents[i][2] );
}
for( int i = 0; i < mesh->mNumFaces; i++ ) {
    for( int j = 0; j < 3; j++ ) {
        indices.push_back( mesh->mFaces[i].mIndices[j] );
    }
}

首次将数据发送到显卡(在前面的代码之后立即调用):

glGenBuffers( 1, &glVertData );
glBindBuffer( GL_ARRAY_BUFFER, glVertData );
glBufferData( GL_ARRAY_BUFFER, meshData.size() * sizeof( GLfloat ), &meshData[0], GL_STATIC_DRAW );
// Generate a buffer for the indices as well
glGenBuffers( 1, &glIndexes );
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, glIndexes );
glBufferData( GL_ELEMENT_ARRAY_BUFFER, indices.size() * sizeof(unsigned short), &indices[0], GL_STATIC_DRAW );

渲染网格:

//Tell the shader to use our data
//bindVerts, bindUvs, bindNorms, and bindTangents refer to attribute variables in my shader
//vertexPosition_modelspace, vertexUV, vertexNormal_modelspace, and vertexTangent_modelspace, respectively.
this->verts = bindVerts;
this->uvs = bindUvs;
this->norms = bindNorms;
this->tangents = bindTangents;
glEnableVertexAttribArray( verts );
glEnableVertexAttribArray( uvs );
glEnableVertexAttribArray( norms );
glEnableVertexAttribArray( tangents );
//Specify how the graphics card should decode our data
// 1rst attribute buffer : vertices
glBindBuffer( GL_ARRAY_BUFFER, glVertData );
glVertexAttribPointer( verts, 3, GL_FLOAT, GL_FALSE, 12, (void*) 0 );
// 2nd attribute buffer : normals
glVertexAttribPointer( norms, 3, GL_FLOAT, GL_FALSE, 12, (void*) 3 ); 
//3rd attribute buffer : UVs
glVertexAttribPointer( uvs, 3, GL_FLOAT, GL_FALSE, 12, (void*) 6 );
//4th attribute buffer: tangents
glVertexAttribPointer( tangents, 3, GL_FLOAT, GL_FALSE, 12, (void*) 9 );
// Index buffer
glBindBuffer( GL_ELEMENT_ARRAY_BUFFER, glIndexes );
//rendering the mesh with VBOs:
glDrawElements( GL_LINES, indices.size(), GL_UNSIGNED_SHORT, (void*) 0 );
//specifying the vertex data individually:
glBegin( GL_TRIANGLES );
int ind;
for( int i = 0; i < indices.size(); i++ ) {
    ind = indices[i] * 12;
    glNormal3fv( &meshData[ind + 3] );
    glTexCoord2fv( &meshData[ind + 6] );
    glVertex3fv( &meshData[ind] );
}
glEnd();
//clean up after the render
glDisableVertexAttribArray( verts );
glDisableVertexAttribArray( uvs );
glDisableVertexAttribArray( norms );
glDisableVertexAttribArray( tangents );

我的顶点着色器:

#version 130
// Input vertex data, different for all executions of this shader.
//it doesn't work, so we'll just get rid of it
attribute vec3 vertexPosition_modelspace;
attribute vec3 vertexUV;
attribute vec3 vertexNormal_modelspace;
attribute vec3 vertexTangent_modelspace;
// Output data ; will be interpolated for each fragment.
out vec2 UV;
out vec3 Position_worldspace;
out vec3 Normal_cameraspace;
out vec3 EyeDirection_cameraspace;
out vec3 LightDirection_cameraspace;
out vec4 ShadowCoord;
// Values that stay constant for the whole mesh.
uniform mat4 MVP;
uniform mat4 V;
uniform mat4 M;
uniform vec3 LightInvDirection_worldspace;
uniform mat4 DepthBiasMVP;
uniform sampler2D normalMap;
attribute vec3 vTangent;
void main() {
    // Output position of the vertex, in clip space : MVP * position
    gl_Position =  MVP * vec4( vertexPosition_modelspace, 1 );
    ShadowCoord = DepthBiasMVP *  vec4( vertexPosition_modelspace, 0 );
    // Position of the vertex, in worldspace : M * position
    Position_worldspace = ( M * vec4( vertexPosition_modelspace, 0 ) ).xyz;
    // Vector that goes from the vertex to the camera, in camera space.
    // In camera space, the camera is at the origin (0,0,0).
    EyeDirection_cameraspace = vec3( 0, 0, 0 ) - ( V * M *  vec4(         vertexPosition_modelspace, 0 ) ).xyz;
    // Vector that goes from the vertex to the light, in camera space
    LightDirection_cameraspace = ( V * vec4( LightInvDirection_worldspace, 0 ) ).xyz;
    // UV of the vertex. No special space for this one.
    UV = vertexUV.st;
    // Normal of the the vertex, in camera space
    // Only correct if ModelMatrix does not scale the model ! Use its inverse transpose if not.
    Normal_cameraspace = ( V * M * vec4( vertexNormal_modelspace.xyz, 0 ) ).xyz; 
}

片段着色器:

#version 130
// Interpolated values from the vertex shaders
in vec2 UV;
in vec3 Position_worldspace;
in vec3 Normal_cameraspace;
in vec3 EyeDirection_cameraspace;
in vec3 LightDirection_cameraspace;
in vec4 ShadowCoord;
out vec4 fragColor;
// Values that stay constant for the whole mesh.
uniform sampler2D diffuse;
uniform mat4 MV;
uniform vec3 LightPosition_worldspace;
uniform sampler2D shadowMap;
//uniform int shadowLevel;  //0 is no shadow, 1 is hard shadows, 2 is soft shadows, 3 is PCSS
// Returns a random number based on a vec3 and an int.
float random( vec3 seed, int i ) {
    vec4 seed4 = vec4( seed, i );           
    float dot_product = dot( seed4, vec4( 12.9898, 78.233, 45.164, 94.673 ) );
    return fract( sin( dot_product ) * 43758.5453 );
}
int mod( int a, int b ) {
    return a - (a / b);
}
void main() {
    int shadowLevel = 1;    //let's just do hard shadows
    // Light emission properties
    vec3 LightColor = vec3( 1, 1, 1 );
    float LightPower = 1.0f;
    // Material properties
    vec3 MaterialDiffuseColor = texture( diffuse, UV ).rgb;
    vec3 MaterialAmbientColor = vec3( 0.1, 0.1, 0.1 ) * MaterialDiffuseColor;
    vec3 MaterialSpecularColor = vec3( 0.3, 0.3, 0.3 );
    vec3 n = normalize( Normal_cameraspace );
    vec3 l = normalize( LightDirection_cameraspace );
    float cosTheta = clamp( dot( n, l ), 0.2, 1 );
    // Eye vector (towards the camera)
    vec3 E = normalize( EyeDirection_cameraspace );
    // Direction in which the triangle reflects the light
    vec3 R = reflect( -l, n );
    // Cosine of the angle between the Eye vector and the Reflect vector,
    // clamped to 0
    //  - Looking into the reflection -> 1
    //  - Looking elsewhere -> < 1
    float cosAlpha = clamp( dot( E, R ), 0, 1 );
    float visibility = 1.0;
    //variable bias
    float bias = 0.005 * tan( acos( cosTheta ) );
    bias = clamp( bias, 0, 0.01 );
    // dFragment to the light
    float dFragment = ( ShadowCoord.z-bias ) / ShadowCoord.w;
    float dBlocker = 0;
    float penumbra = 1;
    float wLight = 5.0;
    if( shadowLevel == 3 ) {
        // Sample the shadow map 8 times
        float count = 0;
        float temp;
        float centerBlocker = texture( shadowMap, ShadowCoord.xy).r;
        float scale = (wLight * (dFragment - centerBlocker)) / dFragment;
        for( int i = 0; i < 16; i++ ) {    
            temp = texture( shadowMap, ShadowCoord.xy + (scale * poissonDisk( i ) / 50.0) ).r;
            if( temp < dFragment ) {
                dBlocker += temp;
                count += 1;    
            }
        }
        if( count > 0 ) {
            dBlocker /= count;
            penumbra = wLight * (dFragment - dBlocker) / dFragment;
        }
    }
    if( shadowLevel == 1 ) {
        if( texture( shadowMap,  ShadowCoord.xy).r < dFragment ) {
            visibility -= 0.8;
        }
    } else if( shadowLevel > 1 ) {
        float iterations = 32;
        float sub = 0.8f / iterations;
        for( int i = 0; i < iterations; i++ ) {
            int index = mod( int( 32.0 * random( gl_FragCoord.xyy, i ) ), 32 );
            if( texture( shadowMap,  ShadowCoord.xy + (penumbra * poissonDisk( index ) / 250.0) ).r < dFragment ) {
                visibility -= sub;
            }
        }
    }
    visibility = min( visibility, cosTheta );
    //MaterialDiffuseColor = vec3( 0.8, 0.8, 0.8 );
    fragColor.rgb = MaterialAmbientColor +
        visibility * MaterialDiffuseColor * LightColor * LightPower +
        visibility * MaterialSpecularColor * LightColor * LightPower * pow( cosAlpha, 5             );
}

请注意,泊松磁盘( int ind ) 返回一个大小不超过 1 的 vec2,它位于泊松盘分布中。即使我使用的是着色器版本 130,我也使用了函数而不是数组,因为数组在我的笔记本电脑上运行得相当慢。

在进行任何渲染之前,我会绑定该着色器。我还确保将正确的变量上传到我所有的制服上,但我没有展示以节省空间,因为我知道它工作正常。

有谁知道是什么导致了这种不正确的渲染?

好吧,首先,停止使用 GL_LINES 绘制 VBO。对即时模式和 VBO 绘图使用相同的基元模式。

另外,从什么时候开始 3*4 = 3?使用交错数据结构时,VBO 顶点指针中的地址(偏移量)应为元素数乘以数据类型的大小。 GL_FLOAT是 4 个字节,如果您有 3 分量顶点位置,这意味着 VBO 中下一个字段的偏移量为 3*4 = (void *)12 ,而不是 (void *)3 。对于每个额外的顶点数组指针,此过程必须继续,它们都使用不正确的偏移量。

同样,VBO 的步幅应该是 12 * sizeof (GLfloat) = 48,而不是 12。

最新更新