PyCUDA 非法访问 curandState*



我正在研究入侵物种的传播,并尝试使用XORWOW随机数生成器在PyCUDA内核中生成随机数。我需要能够用作研究中输入的矩阵非常大(高达 8,000 x 8,000(。

错误似乎发生在索引 XORWOW 生成器curandState*get_random_number内部。代码在较小的矩阵上执行时没有错误,并产生正确的结果。我正在 2 个 NVidia Tesla K20X GPU 上运行我的代码。

内核代码和设置:

kernel_code = '''
    #include <curand_kernel.h>
    #include <math.h>
    extern "C" {
    __device__ float get_random_number(curandState* global_state, int thread_id) {
        curandState local_state = global_state[thread_id];
        float num = curand_uniform(&local_state);
        global_state[thread_id] = local_state;
        return num;
    }
    __global__ void survival_of_the_fittest(float* grid_a, float* grid_b, curandState* global_state, int grid_size, float* survival_probabilities) {
        int x = threadIdx.x + blockIdx.x * blockDim.x;             // column index of cell
        int y = threadIdx.y + blockIdx.y * blockDim.y;             // row index of cell
        // make sure this cell is within bounds of grid
        if (x < grid_size && y < grid_size) {
            int thread_id = y * grid_size + x;                      // thread index
            grid_b[thread_id] = grid_a[thread_id];                  // copy current cell
            float num;
            // ignore cell if it is not already populated
            if (grid_a[thread_id] > 0.0) {
                num = get_random_number(global_state, thread_id);
                // agents in this cell die
                if (num < survival_probabilities[thread_id]) {
                    grid_b[thread_id] = 0.0;                        // cell dies
                    //printf("Cell (%d,%d) died (probability of death was %f)\n", x, y, survival_probabilities[thread_id]);
                }
            }
        }
    }
mod = SourceModule(kernel_code, no_extern_c = True)
survival = mod.get_function('survival_of_the_fittest')

数据设置:

matrix_size = 2000
block_dims = 32
grid_dims = (matrix_size + block_dims - 1) // block_dims
grid_a = gpuarray.to_gpu(np.ones((matrix_size,matrix_size)).astype(np.float32))
grid_b = gpuarray.to_gpu(np.zeros((matrix_size,matrix_size)).astype(np.float32))
generator = curandom.XORWOWRandomNumberGenerator()
grid_size = np.int32(matrix_size)
survival_probabilities = gpuarray.to_gpu(np.random.uniform(0,1,(matrix_size,matrix_size)))

内核调用:

survival(grid_a, grid_b, generator.state, grid_size, survival_probabilities, 
    grid = (grid_dims, grid_dims), block = (block_dims, block_dims, 1))

我希望能够为高达 (8,000 x 8,000( 的矩阵生成 (0,1] 范围内的随机数,但在大型矩阵上执行我的代码会导致非法内存访问错误。

pycuda._driver.LogicError: cuMemcpyDtoH failed: an illegal memory access was encountered
PyCUDA WARNING: a clean-up operation failed (dead context maybe?)
cuMemFree failed: an illegal memory access was encountered

我在get_random_number中错误地索引curandState*吗?如果没有,还有什么可能导致此错误?

这里的问题是这段代码之间的脱节,它决定了 PyCUDA curandom接口为其内部状态分配的状态大小,而你的帖子中的这段代码

matrix_size = 2000
block_dims = 32
grid_dims = (matrix_size + block_dims - 1) // block_dims

你似乎假设 PyCUDA 会神奇地为你在代码中选择的任何块和网格维度分配足够的状态。这显然不太可能,尤其是在大型网格规模下。你要么需要

  • 修改代码以使用与curandom模块内部用于您选择使用的任何生成器相同的块和网格大小,或者
  • 分配和管理您自己的状态暂存空间,以便您有足够的状态来为您选择的块和网格大小提供服务

我把它留给读者练习这两种方法中的哪一种在您的应用程序中效果更好。

相关内容

  • 没有找到相关文章

最新更新